logo资料库

Stochastic Models, Information Theory, and Lie Groups Volume 2.pdf

第1页 / 共460页
第2页 / 共460页
第3页 / 共460页
第4页 / 共460页
第5页 / 共460页
第6页 / 共460页
第7页 / 共460页
第8页 / 共460页
资料共460页,剩余部分请下载后查看
Stochastic Models, Information Theory, and Lie Groups, Volume 2
ANHA Series Preface
Preface
Contents
10 Lie Groups I: Introduction and Examples
11 Lie Groups II: Differential-Geometric Properties
12 Lie Groups III: Integration, Convolution,and Fourier Analysis
13 Variational Calculus on Lie Groups
14 Statistical Mechanics and Ergodic Theory
15 Parts Entropy and the Principal Kinematic Formula
16 Multivariate Statistical Analysis and Random Matrix Theory
17 Information, Communication, and Group Theory
18 Algebraic and Geometric Coding Theory
19 Information Theory on Lie Groups
20 Stochastic Processes on Lie Groups
21 Locomotion and Perception as Communication over Principal Fiber Bundles
22 Summary
Index
Gitta Kutyniok Technische Universität Berlin Berlin, Germany Zuowei Shen National University of Singapore Singapore AppliedandNumericalHarmonicAnalysisSeriesEditorJohnJ.BenedettoUniversityofMarylandCollegePark,MD,USAEditorialAdvisoryBoardAkramAldroubiVanderbiltUniversityNashville,TN,USAAndreaBertozziUniversityofCaliforniaLosAngeles,CA,USADouglasCochranArizonaStateUniversityPhoenix,AZ,USAHansG.FeichtingerUniversityofViennaVienna,AustriaChristopherHeilGeorgiaInstituteofTechnologyAtlanta,GA,USAStéphaneJaffardUniversityofParisXIIParis,FranceJelenaKovaˇcevi´cCarnegieMellonUniversityPittsburgh,PA,USAMauroMaggioniDukeUniversityDurham,NC,USAThomasStrohmerUniversityofCaliforniaDavis,CA,USAYangWangMichiganStateUniversityEastLansing,MI,USA
Stochastic Models, Information Theory, and Lie Groups, Volume 2 Analytic Methods and Modern Applications Gregory S. Chirikjian
ISBN 978-0-8176- -2 DOI 10.1007/978-0-8176- Springer New York Dordrecht Heidelberg London 4944-9 4943 e-ISBN 978-0-8176- 4944-9 Library of Congress Control Number: 2011941792 Mathematics Subject Classification 94A15, 94A17 (2010): 2E60, 53Bxx, 53C65, 58A15, 58J65, 60D05, 60H10, 70G45, 82C31, 2 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media, LLC, 233 Springer Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Sc ience+Business Media (www.birkhauser-science.com) Gregory S. ChirikjianDepartment of Mechanical EngineeringThe Johns Hopkins UniversityBaltimore, MD 21218-2682USAgregc@jhu.edu
Tomyfamily
ANHASeriesPrefaceTheAppliedandNumericalHarmonicAnalysis(ANHA)bookseriesaimstoprovidetheengineering,mathematical,andscientificcommunitieswithsignificantdevelopmentsinharmonicanalysis,rangingfromabstractharmonicanalysistobasicapplications.Thetitleoftheseriesreflectstheimportanceofapplicationsandnumericalimplementation,butrichnessandrelevanceofapplicationsandimplementationdependfundamentallyonthestructureanddepthoftheoreticalunderpinnings.Thus,fromourpointofview,theinterleavingoftheoryandapplicationsandtheircreativesymbioticevolutionisaxiomatic.Harmonicanalysisisawellspringofideasandapplicabilitythathasflourished,de-veloped,anddeepenedovertimewithinmanydisciplinesandbymeansofcreativecross-fertilizationwithdiverseareas.Theintricateandfundamentalrelationshipbe-tweenharmonicanalysisandfieldssuchassignalprocessing,partialdifferentialequa-tions(PDEs),andimageprocessingisreflectedinourstate-of-the-artANHAseries.Ourvisionofmodernharmonicanalysisincludesmathematicalareassuchaswavelettheory,Banachalgebras,classicalFourieranalysis,time-frequencyanalysis,andfractalgeometry,aswellasthediversetopicsthatimpingeonthem.Forexample,wavelettheorycanbeconsideredanappropriatetooltodealwithsomebasicproblemsindigitalsignalprocessing,speechandimageprocessing,geophysics,patternrecognition,biomedicalengineering,andturbulence.Theseareasimplementthelatesttechnologyfromsamplingmethodsonsurfacestofastalgorithmsandcom-putervisionmethods.TheunderlyingmathematicsofwavelettheorydependsnotonlyonclassicalFourieranalysis,butalsoonideasfromabstractharmonicanalysis,includ-ingvonNeumannalgebrasandtheaffinegroup.ThisleadstoastudyoftheHeisenberggroupanditsrelationshiptoGaborsystems,andofthemetaplecticgroupforamean-ingfulinteractionofsignaldecompositionmethods.Theunifyinginfluenceofwavelettheoryintheaforementionedtopicsillustratesthejustificationforprovidingameansforcentralizinganddisseminatinginformationfromthebroader,butstillfocused,areaofharmonicanalysis.ThiswillbeakeyroleofANHA.Weintendtopublishwiththescopeandinteractionthatsuchahostofissuesdemands.Alongwithourcommitmenttopublishmathematicallysignificantworksatthefrontiersofharmonicanalysis,wehaveacomparablystrongcommitmenttopublishmajoradvancesinthefollowingapplicabletopicsinwhichharmonicanalysisplaysasubstantialrole:vii
分享到:
收藏