logo资料库

2007年广西河池市中考数学真题及答案.doc

第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
资料共8页,全文预览结束
2007 年广西河池市中考数学真题及答案 (考试时间为 120 分钟,满分 120 分) 注意:本试卷分为试题卷和答题卷两部分,请把答案写在答题卷上,在试题卷上答题无效 .......... 一、填空题(本大题共 10 小题,每小题 2 分,共 20 分.) 1.如果收入 200 元记作+200 元,那么支出 150 元,记作 元. 2.如图 1,直线 a,b被直线 c所截,且 a b∥ , 如果∠1=65°,那么∠2= . 3.分解因式: 2 1 x   4.不等式 2 1 5 x   的解集是 . . c c 1 2 图 1 图1 a a b b 5.龙滩电站第一期工程年发电量为 157 亿千瓦时,用科学记数法表示 157 亿千瓦时 = 千瓦时. 6.一副三角板,如图 2 叠放在一起,∠的度数是 度. 7 . 已 知 在 Rt ABC△ 中 , ∠C 为 直 角 , AC = 4cm , BC = 3cm , 图 2 sin∠A= . 8.若⊙O和⊙O 相切,它们的半径分别为 5 和 3,则圆心距 OO 为 . 9.根据图 3 中的程序,当输入 x =3 时,输出的结果 y = . 输 入 x y =x+5 (x≤1) y =-x+5(x>1) 图 3 输 出 y 10.古希腊数学家把 1,3,6,10,15,21,……,叫做三角形数,根据它的规律,则第 100 个三角形数与 第 98 个三角形数的差为 . 二、选择题(本大题共 8 小题,每小题 3 分,共 24 分;在每小题给出的四个选项中,只有一项是正确的, 每小题选对得 3 分,选错、不选或多选均得零分) 11.下列运算正确的是( ) A. 5 x  5 x  10 x B. 5 x x  5 10 x C. 5 5 )x ( 10 x D. 20 x  2 x  10 x 12.图 4 中几何体的左视图是( ) 图 4 A. B. C. D.
13.甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率 ) 为( 2 3 A. B. 1 2 C. 1 3 D. 1 6 14.小明准备用 22 元钱买笔和笔记本,已知每支笔 3 元,每本笔记本 2 元,他买了 3 本笔记本后,其余的 钱用来买笔,那么他最多可以买( A.3 支笔 C.5 支笔 15.若一个图形绕着一个定点旋转一个角( 0 B.4 支笔 ) D.6 支笔 180 ≤ )后能够与原来的图形重合,那么这个图形叫 做旋转对称图形.例如:等边三角形绕着它的中心旋转 120°(如图 5),能够与原来的等边三角形重合, 因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中 心对称图形.下面四个图形中,旋转对称图形个数有( ) 120 图 5 A. 1 B.2 C.3 D. 4  A. 16.已知二次函数 y 4 4 ac 17.已知正比例函数 y 0 b , 0 b , C. ac a a 2 2     ax 2  bx  ( c a  的最大值为 0,则( 0) )   0 0 B. D. a a   0 b , 0 b , 2 2   4 4 ac  ac  0 0 kx ( 0 k  )的函数值 y 随 x 的增大而增大,则一次函数 y  kx  的图象大致是 k ( ) y y O O x x y O x y O x 18.如图 6,在矩形 ABCD中,AB=3,AD=4,点 P在 AD上,PE⊥AC于 E,PF⊥BD于 F,则 PE+PF等于( ) C. D. A. A. 7 5 B. 12 5 C. B. 13 5 D. 14 5 A B P E F 图 6 D C
三、解答题 (本大题共 8 小题,满分 76 分.解答应写出文字说明、证明过程或演算步骤.) 19.(本小题满分 8 分) 计算 1 2   ( 1) 2007  1 4   5 20.(本小题满分 9 分) 如图 7,已知网格上最小的正方形的边长为 1. y A (1)分别写出 A、B、C三点的坐标;  (2)作△ABC关于 y轴的对称图形△ A B C  B C O x (不写作法); (3)求△ABC的面积. 21. (本小题满分 8 分) . 图 7 如图 8,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明. 你所添加的条件为: ; 得到的一对全等三角形是△______≌△______. 证明: P A C D B 图 8 22. (本小题满分 9 分) 三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为 12 个 月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取 11 只日光灯管进行检测,灯管的使用寿命(单 位:月)如下: 甲厂 乙厂 7 7 8 7 9 9 9 9 9 10 11 10 13 12 14 12 16 12 17 13 19 14
丙厂 7 7 8 8 8 12 13 14 15 16 17 试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传? (2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由. 23.(本小题满分 10 分) 今年“五一”黄金周期间,河池市某旅行社接待一日游和三日游的旅客共 1600 人,收取旅游费 129 万 元,其中一日游每人收费 150 元,三日游每人收费 1200 元. 该旅行社接待的一日游和三日游旅客各多少 人? 24.(本小题满分 10 分) 某早餐店每天的利润 y(元)与售出的早餐 x(份)之间的函数关系如图 9 所示.当每天售出的早餐超 过 150 份时, 需要增加一名工人. (1)该店每天至少要售出 份早餐才不亏本; (2)求出150 < x ≤ 300 时,y关于 x的函数解析式; (3)要使每天有 120 元以上的盈利,至少要售出 多少份早餐? (4)该店每出售一份早餐,盈利多少元? (5)除上述信息外,你从图象中还能获取什么信息? 请写出一条信息. 230 180 100 80 O -50 (元) y 。 (份) x 300 50 150 250 图 9 25.(本小题满分 10 分) 如图 10,半圆 O为△ABC的外接半圆,AC为直径,D为 BC 上的一动点. (1)问添加一个什么条件后,能使得 BD BE BC BD  ?请说明理由; (2)若 AB∥OD,点 D所在的位置应满足什么条件?请说明理由; (3)如图 11,在 (1)和(2)的条件下,四边形 AODB是什么特殊的四边形?证明你的结论. D B E · O 图 10 A B E D C A O 图 11 C
26. (本小题满分 12 分) 如图 12, 四边形 OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点 M 从O 出发以每秒 2 个单 位长度的速度向 A 运动;点 N 从 B 同时出发,以每秒 1 个单位长度的速度向C 运动.其中一个动点到达终 点时,另一个动点也随之停止运动.过点 N 作 NP 垂直 x 轴于点 P ,连结 AC交 NP于 Q,连结 MQ. (1)点 (填 M或 N)能到达终点; (2)求△AQM的面积 S与运动时间 t的函数关系式,并写出自变量 t的取值范围,当 t为何值时,S 的值最大; (3)是否存在点 M,使得△AQM为直角三角形?若存在,求出点 M的坐标,若不存在,说明理由. y C N B Q O M P 图 12 A x
2007 年中等学校招生河池市统一考试试题 数学(课改区)参考答案及评分标准 一、填空题 1.  150 2. 115° 3. (x+1) (x-1) 4. x>3 5. 1.57×1010 6. 105 7. 3 5 二、选择题 8. 8 和 2 9. 2 10.199 11.B 12.A 13.B 14.C 15.C 16.D 17.A 18.B 三、解答题 19.计算 1 2   ( 1) 2007  1 4   5 解: 原式= 1  1+ 2 = 1  1  5 =  5 1  5(后面三个数中每计算正确一个得 2 分) ·························6 分 2 ·························7 分 ·························8 分 20.解: (1) A( 3 ,3),B( 5 ,1),C( 1 ,0) ·························3 分 (2)图略······································································································ 6 分 (3) S △ ABC  5 ······························································································ 9 分 21.所添加条件为 PA=PB··················································································· 2 分 得到的一对全等三角形是△PAD≌△PBC ····························································· 4 分 证明:∵PA=PB ·······························································································5 分 ∴∠A=∠B ··································································································· 6 分 又∵AD=BC ··································································································7 分 ∴△PAD≌△PBC ····························································································· 8 分 所添加条件,只要能证明三角形全等,按上面评分标准给分. 22.答:(1)甲厂的广告利用了统计中的平均数.················································· 2 分 ····························································· 4 分 乙厂的广告利用了统计中的众数. ····························································· 6 分 丙厂的广告利用了统计中的中位数. (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命···················· 9 分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过 12 个月······················· 9 分 23. 解:设接待 1 日游旅客 x 人,接待 3 日游旅客 y ,根据题意得·························· 1 分   150  x x y   1200 y  1600  1290000 解这个方程组,得 x    y 600 1000 ································································ 6 分 ································································ 9 分 答:该旅行社接待 1 日游旅客 600 人,接待 3 日游旅客 1000 人.····························10 分 24. 解: (1) 50 ····················································································· 2 分 (2)设函数的解析式为 y =kx+b,由题意得 ························································3 分
70 解方程组得 180 230 k b   k b   1 k     b  ························································ 5 分 ······································································6 分 250   300  所以函数的解析式为 y =x 70 (3) 解不等式 x 70>120 得 x>190 因此,至少要售出 190 份早餐,才能使每天有 120 元以上的盈利.····························8 分 ······················································· 9 分 (4)该店每出售一份早餐,盈利 1 元. ············································································ 10 分 (5)信息合理即可. 25.解: (1)添加 AB=BD ········································································································2 分 ∵AB=BD ∴ AB = BD ∴∠BDE =∠BCD················································································ 3 分 又∵∠DBE =∠DBC ∴△BDE∽△BCD ∴ BD BE BC BD  ··································································································································4 分 (2)若 AB∥DO,点 D所在的位置是 BC 的中点 ····················································5 分 ∴∠ADO =∠BAD ··································································· 6 分 ∵AB∥DO ∵∠ADO =∠OAD ∴∠OAD =∠BAD ∴ DB = DC ·············································· 7 分 (3)在(1)和(2)的条件下,. ∵ AB = BD = DC ∴∠BDA =∠DAC ∴ BD∥OA 又∵AB∥DO ∴四边形 AODB是平行四边形 ········································· 9 分 ∴平行四边形 AODB是菱形 ··············································· 10 分 ∵OA=OD 26. 解:(1)点 M ····················································································· 1 分 (2)经过 t秒时, NB t , 4 2 t   ,   AM CN 则 3 t 2 OM t ∵ BCA = MAQ = 45 ∴ QN  CN 3   t AM PQ   ∴ S △ AMQ      2 t t 1 2 2 ·························································2 分 PQ ∴ 1 t   1 (4 2 )(1 2   t t ) ······························································································· 3 分 ∴ S       2 2 t t  2 1 2     9 4 ··································································· 5 分 ∵0 t≤ ≤ ∴当 2 t  时,S的值最大. ························································ 6 分 (3)存在. ····························································································7 分 t   1 2
设经过 t秒时,NB=t,OM=2t 则 CN   , 3 t AM   4 2 t ∴ BCA = MAQ = 45 ····································································· 8 分 ①若 AQM  90  ,则 PQ 是等腰 Rt△ MQA 底边 MA 上的高 ∴ PQ 是底边 MA 的中线 ∴ PQ AP   1 2 MA ∴ 1   1 2 (4 2 ) t  t 1 2 ∴ t  ∴点 M 的坐标为(1,0) ········································································10 分 ②若  QMA  90  ,此时QM 与QP 重合 ∴QM QP MA   4 2 t    ∴1 t ∴ 1t  ∴点 M 的坐标为(2,0) ········································································ 12 分
分享到:
收藏