logo资料库

STM32F407ZGT6__复用功能映射表.pdf

第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
资料共5页,全文预览结束
Table 1. Device summary
1 Introduction
2 Description
Table 2. STM32F405xx and STM32F407xx: features and peripheral counts (continued)
2.1 Full compatibility throughout the family
Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64
Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package
Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package
Figure 4. Compatible board design between STM32F2xx and STM32F4xx for LQFP176 package
2.2 Device overview
Figure 5. STM32F40x block diagram
2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM
2.2.2 Adaptive real-time memory accelerator (ART Accelerator™)
2.2.3 Memory protection unit
2.2.4 Embedded Flash memory
2.2.5 CRC (cyclic redundancy check) calculation unit
2.2.6 Embedded SRAM
2.2.7 Multi-AHB bus matrix
Figure 6. Multi-AHB matrix
2.2.8 DMA controller (DMA)
2.2.9 Flexible static memory controller (FSMC)
2.2.10 Nested vectored interrupt controller (NVIC)
2.2.11 External interrupt/event controller (EXTI)
2.2.12 Clocks and startup
2.2.13 Boot modes
2.2.14 Power supply schemes
2.2.15 Power supply supervisor
2.2.16 Voltage regulator
Figure 7. Regulator ON/internal reset OFF
Figure 8. Startup in regulator OFF: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization
Figure 9. Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization
2.2.17 Real-time clock (RTC), backup SRAM and backup registers
2.2.18 Low-power modes
2.2.19 VBAT operation
2.2.20 Timers and watchdogs
Table 3. Timer feature comparison
2.2.21 Inter-integrated circuit interface (I²C)
2.2.22 Universal synchronous/asynchronous receiver transmitters (USART)
Table 4. USART feature comparison
2.2.23 Serial peripheral interface (SPI)
2.2.24 Inter-integrated sound (I2S)
2.2.25 Audio PLL (PLLI2S)
2.2.26 Secure digital input/output interface (SDIO)
2.2.27 Ethernet MAC interface with dedicated DMA and IEEE 1588 support
2.2.28 Controller area network (bxCAN)
2.2.29 Universal serial bus on-the-go full-speed (OTG_FS)
2.2.30 Universal serial bus on-the-go high-speed (OTG_HS)
2.2.31 Digital camera interface (DCMI)
2.2.32 Random number generator (RNG)
2.2.33 General-purpose input/outputs (GPIOs)
2.2.34 Analog-to-digital converters (ADCs)
2.2.35 Temperature sensor
2.2.36 Digital-to-analog converter (DAC)
2.2.37 Serial wire JTAG debug port (SWJ-DP)
2.2.38 Embedded Trace Macrocell™
3 Pinouts and pin description
Figure 10. STM32F40x LQFP64 pinout
Figure 11. STM32F40x LQFP100 pinout
Figure 12. STM32F40x LQFP144 pinout
Figure 13. STM32F40x LQFP176 pinout
Figure 14. STM32F40x UFBGA176 ballout
Table 5. Legend/abbreviations used in the pinout table (continued)
Table 6. STM32F40x pin and ball definitions (continued)
Table 7. Alternate function mapping (continued)
4 Memory map
Figure 15. Memory map
5 Electrical characteristics
5.1 Parameter conditions
5.1.1 Minimum and maximum values
5.1.2 Typical values
5.1.3 Typical curves
5.1.4 Loading capacitor
5.1.5 Pin input voltage
Figure 16. Pin loading conditions
Figure 17. Pin input voltage
5.1.6 Power supply scheme
Figure 18. Power supply scheme
5.1.7 Current consumption measurement
Figure 19. Current consumption measurement scheme
5.2 Absolute maximum ratings
Table 8. Voltage characteristics
Table 9. Current characteristics
Table 10. Thermal characteristics
5.3 Operating conditions
5.3.1 General operating conditions
Table 11. General operating conditions (continued)
Table 12. Limitations depending on the operating power supply range
5.3.2 VCAP1/VCAP2 external capacitor
Figure 20. External capacitor CEXT
Table 13. VCAP1/VCAP2 operating conditions
5.3.3 Operating conditions at power-up / power-down (regulator ON)
Table 14. Operating conditions at power-up / power-down (regulator ON)
5.3.4 Operating conditions at power-up / power-down (regulator OFF)
Table 15. Operating conditions at power-up / power-down (regulator OFF)
5.3.5 Embedded reset and power control block characteristics
Table 16. Embedded reset and power control block characteristics (continued)
5.3.6 Supply current characteristics
Table 17. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)
Table 18. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM
Figure 21. Typical current consumption vs temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF
Figure 22. Typical current consumption vs temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON
Figure 23. Typical current consumption vs temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF
Figure 24. Typical current consumption vs temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON
Table 19. Typical and maximum current consumption in Sleep mode
Table 20. Typical and maximum current consumptions in Stop mode
Table 21. Typical and maximum current consumptions in Standby mode
Table 22. Typical and maximum current consumptions in VBAT mode
Figure 25. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF)
Figure 26. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON)
Table 23. Switching output I/O current consumption
Table 24. Peripheral current consumption (continued)
5.3.7 Wakeup time from low-power mode
Table 25. Low-power mode wakeup timings
5.3.8 External clock source characteristics
Table 26. High-speed external user clock characteristics
Table 27. Low-speed external user clock characteristics
Figure 27. High-speed external clock source AC timing diagram
Figure 28. Low-speed external clock source AC timing diagram
Table 28. HSE 4-26 MHz oscillator characteristics
Figure 29. Typical application with an 8 MHz crystal
Table 29. LSE oscillator characteristics (fLSE = 32.768 kHz)
Figure 30. Typical application with a 32.768 kHz crystal
5.3.9 Internal clock source characteristics
Table 30. HSI oscillator characteristics
Table 31. LSI oscillator characteristics
Figure 31. ACCLSI versus temperature
5.3.10 PLL characteristics
Table 32. Main PLL characteristics (continued)
Table 33. PLLI2S (audio PLL) characteristics (continued)
5.3.11 PLL spread spectrum clock generation (SSCG) characteristics
Table 34. SSCG parameters constraint
Figure 32. PLL output clock waveforms in center spread mode
Figure 33. PLL output clock waveforms in down spread mode
5.3.12 Memory characteristics
Table 35. Flash memory characteristics
Table 36. Flash memory programming
Table 37. Flash memory programming with VPP
Table 38. Flash memory endurance and data retention
5.3.13 EMC characteristics
Table 39. EMS characteristics
Table 40. EMI characteristics
5.3.14 Absolute maximum ratings (electrical sensitivity)
Table 41. ESD absolute maximum ratings
Table 42. Electrical sensitivities
5.3.15 I/O current injection characteristics
Table 43. I/O current injection susceptibility
5.3.16 I/O port characteristics
Table 44. I/O static characteristics
Table 45. Output voltage characteristics
Table 46. I/O AC characteristics (continued)
Figure 34. I/O AC characteristics definition
5.3.17 NRST pin characteristics
Table 47. NRST pin characteristics
Figure 35. Recommended NRST pin protection
5.3.18 TIM timer characteristics
Table 48. Characteristics of TIMx connected to the APB1 domain
Table 49. Characteristics of TIMx connected to the APB2 domain
5.3.19 Communications interfaces
Table 50. I2C characteristics
Figure 36. I2C bus AC waveforms and measurement circuit
Table 51. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V)
Table 52. SPI characteristics
Figure 37. SPI timing diagram - slave mode and CPHA = 0
Figure 38. SPI timing diagram - slave mode and CPHA = 1(1)
Figure 39. SPI timing diagram - master mode(1)
Table 53. I2S characteristics
Figure 40. I2S slave timing diagram (Philips protocol)(1)
Figure 41. I2S master timing diagram (Philips protocol)(1)
Table 54. USB OTG FS startup time
Table 55. USB OTG FS DC electrical characteristics
Figure 42. USB OTG FS timings: definition of data signal rise and fall time
Table 56. USB OTG FS electrical characteristics
Table 57. USB FS clock timing parameters
Table 58. USB HS DC electrical characteristics
Table 59. USB HS clock timing parameters
Figure 43. ULPI timing diagram
Table 60. ULPI timing
Table 61. Ethernet DC electrical characteristics
Figure 44. Ethernet SMI timing diagram
Table 62. Dynamics characteristics: Ethernet MAC signals for SMI
Figure 45. Ethernet RMII timing diagram
Table 63. Dynamics characteristics: Ethernet MAC signals for RMII
Figure 46. Ethernet MII timing diagram
Table 64. Dynamics characteristics: Ethernet MAC signals for MII
5.3.20 12-bit ADC characteristics
Table 65. ADC characteristics (continued)
Table 66. ADC accuracy at fADC = 30 MHz
Figure 47. ADC accuracy characteristics
Figure 48. Typical connection diagram using the ADC
Figure 49. Power supply and reference decoupling (VREF+ not connected to VDDA)
Figure 50. Power supply and reference decoupling (VREF+ connected to VDDA)
5.3.21 Temperature sensor characteristics
Table 67. TS characteristics
5.3.22 VBAT monitoring characteristics
Table 68. VBAT monitoring characteristics
5.3.23 Embedded reference voltage
Table 69. Embedded internal reference voltage
5.3.24 DAC electrical characteristics
Table 70. DAC characteristics (continued)
Figure 51. 12-bit buffered /non-buffered DAC
5.3.25 FSMC characteristics
Figure 52. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
Table 71. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings
Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
Table 72. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings
Figure 54. Asynchronous multiplexed PSRAM/NOR read waveforms
Table 73. Asynchronous multiplexed PSRAM/NOR read timings
Figure 55. Asynchronous multiplexed PSRAM/NOR write waveforms
Table 74. Asynchronous multiplexed PSRAM/NOR write timings
Figure 56. Synchronous multiplexed NOR/PSRAM read timings
Table 75. Synchronous multiplexed NOR/PSRAM read timings
Figure 57. Synchronous multiplexed PSRAM write timings
Table 76. Synchronous multiplexed PSRAM write timings
Figure 58. Synchronous non-multiplexed NOR/PSRAM read timings
Table 77. Synchronous non-multiplexed NOR/PSRAM read timings
Figure 59. Synchronous non-multiplexed PSRAM write timings
Table 78. Synchronous non-multiplexed PSRAM write timings
Figure 60. PC Card/CompactFlash controller waveforms for common memory read access
Figure 61. PC Card/CompactFlash controller waveforms for common memory write access
Figure 62. PC Card/CompactFlash controller waveforms for attribute memory read access
Figure 63. PC Card/CompactFlash controller waveforms for attribute memory write access
Figure 64. PC Card/CompactFlash controller waveforms for I/O space read access
Figure 65. PC Card/CompactFlash controller waveforms for I/O space write access
Table 79. Switching characteristics for PC Card/CF read and write cycles in attribute/common space
Table 80. Switching characteristics for PC Card/CF read and write cycles in I/O space
Figure 66. NAND controller waveforms for read access
Figure 67. NAND controller waveforms for write access
Figure 68. NAND controller waveforms for common memory read access
Figure 69. NAND controller waveforms for common memory write access
Table 81. Switching characteristics for NAND Flash read cycles
Table 82. Switching characteristics for NAND Flash write cycles
5.3.26 Camera interface (DCMI) timing specifications
Table 83. DCMI characteristics
5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics
Figure 70. SDIO high-speed mode
Figure 71. SD default mode
Table 84. SD / MMC characteristics
5.3.28 RTC characteristics
Table 85. RTC characteristics
6 Package characteristics
6.1 Package mechanical data
Figure 72. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
Figure 73. Recommended footprint(1)
Table 86. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
Figure 74. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline
Figure 75. Recommended footprint(1)
Table 87. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data
Figure 76. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline
Figure 77. Recommended footprint(1)
Table 88. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data
Figure 78. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline
Table 89. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data
Figure 79. LQFP176 24 x 24 mm, 144-pin low-profile quad flat package outline
Table 90. LQFP176, 24 x 24 mm, 144-pin low-profile quad flat package mechanical data
6.2 Thermal characteristics
Table 91. Package thermal characteristics
7 Part numbering
Table 92. Ordering information scheme
Appendix A Application block diagrams
A.1 Main applications versus package
Table 93. Main applications versus package for STM32F407xx microcontrollers
A.2 Application example with regulator OFF
Figure 80. Regulator OFF/internal reset ON
Figure 81. Regulator OFF/internal reset OFF
A.3 USB OTG full speed (FS) interface solutions
Figure 82. USB controller configured as peripheral-only and used in Full speed mode
Figure 83. USB controller configured as host-only and used in full speed mode
Figure 84. USB controller configured in dual mode and used in full speed mode
A.4 USB OTG high speed (HS) interface solutions
Figure 85. USB controller configured as peripheral, host, or dual-mode and used in high speed mode
A.5 Complete audio player solutions
Figure 86. Complete audio player solution 1
Figure 87. Complete audio player solution 2
Figure 88. Audio player solution using PLL, PLLI2S, USB and 1 crystal
Figure 89. Audio PLL (PLLI2S) providing accurate I2S clock
Figure 90. Master clock (MCK) used to drive the external audio DAC
Figure 91. Master clock (MCK) not used to drive the external audio DAC
A.6 Ethernet interface solutions
Figure 92. MII mode using a 25 MHz crystal
Figure 93. RMII with a 50 MHz oscillator
Figure 94. RMII with a 25 MHz crystal and PHY with PLL
8 Revision history
Table 94. Document revision history (continued)
/ 5 6 1 6 7 D o c I D 0 2 2 1 5 2 R e v 2 Port PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 TIM2_CH1 TIM2_ETR TIM 5_CH1 TIM8_ETR TIM2_CH2 TIM5_CH2 TIM2_CH3 TIM5_CH3 TIM9_CH1 TIM2_CH4 TIM5_CH4 TIM9_CH2 TIM2_CH1 TIM2_ETR TIM8_CH1N TIM1_BKIN TIM3_CH1 TIM8_BKIN TIM1_CH1N TIM3_CH2 TIM8_CH1N MCO1 TIM1_CH1 TIM1_CH2 TIM1_CH3 TIM1_CH4 TIM1_ETR JTMS-SWDIO JTCK-SWCLK JTDI TIM 2_CH1 TIM 2_ETR SPI1_NSS SPI1_SCK SPI1_MISO SPI1_MOSI I2C3_SCL I2C3_SMBA USART2_CTS UART4_TX USART2_RTS UART4_RX USART2_TX USART2_RX USART2_CK SPI3_NSS I2S3_WS ETH_MII_CRS ETH_MII _RX_CLK ETH_RMII _REF_CLK ETH_MDIO OTG_HS_ULPI_D0 ETH _MII_COL EVENTOUT EVENTOUT EVENTOUT EVENTOUT OTG_HS_ULPI_CK EVENTOUT OTG_HS_SOF DCMI_HSYNC EVENTOUT ETH_MII _RX_DV ETH_RMII _CRS_DV TIM13_CH1 TIM14_CH1 OTG_FS_SOF OTG_FS_ID CAN1_RX OTG_FS_DM CAN1_TX OTG_FS_DP USART1_CK USART1_TX USART1_RX USART1_CTS USART1_RTS TIM1_CH2N TIM3_CH3 TIM8_CH2N TIM1_CH3N TIM3_CH4 TIM8_CH3N OTG_HS_ULPI_D1 ETH _MII_RXD2 OTG_HS_ULPI_D2 ETH _MII_RXD3 OTG_HS_INTN SPI1_NSS SPI3_NSS/ I2S3S_WS JTDO/ TRACESWO TIM2_CH2 JTRST TIM3_CH1 TIM3_CH2 TIM4_CH1 TIM4_CH2 SPI1_SCK SPI3_SCK I2S3_CK SPI1_MISO SPI3_MISO I2S3ext_SD SPI3_MOSI I2S3_SD I2C1_SMBA SPI1_MOSI I2C1_SCL I2S2_WS I2C1_SDA TIM4_CH3 TIM10_CH1 I2C1_SCL TIM4_CH4 TIM11_CH1 I2C1_SDA I2C2_SCL I2C2_SDA I2C2_SMBA SPI2_NSS I2S2_WS SPI2_SCK I2S2_CK SPI2_NSS I2S2_WS SPI2_SCK I2S2_CK TIM2_CH3 TIM2_CH4 TIM1_BKIN TIM1_CH1N TIM1_CH2N OTG_HS_ULPI_D4 CAN2_RX OTG_HS_ULPI_D5 ETH _MII_TX_EN ETH _RMII_TX_EN ETH _MII_TXD0 ETH _RMII_TXD0 ETH _MII_TXD1 ETH _RMII_TXD1 OTG_HS_ID USART3_CTS CAN2_TX OTG_HS_ULPI_D6 TIM8_CH2N SPI2_MISO I2S2ext_SD USART3_RTS TIM12_CH1 OTG_HS_DM USART1_TX USART1_RX USART3_TX USART3_RX USART3_CK CAN2_RX OTG_HS_ULPI_D7 ETH _PPS_OUT DCMI_D10 EVENTOUT CAN2_TX CAN1_RX CAN1_TX DCMI_D5 EVENTOUT FSMC_NL DCMI_VSYNC EVENTOUT ETH _MII_TXD3 SDIO_D4 DCMI_D6 EVENTOUT SDIO_D5 DCMI_D7 EVENTOUT OTG_HS_ULPI_D3 ETH_ MII_RX_ER Table 7. Alternate function mapping AF0 SYS AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS AF13 DCMI AF014 AF15 i P n o u t s a n d p n d e s c r i p t i o n i S T M 3 2 F 4 0 5 x x , S T M 3 2 F 4 0 7 x x DCMI_PIXCK EVENTOUT DCMI_D0 DCMI_D1 EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT
Table 7. Port Alternate function mapping (continued) AF5 AF0 AF4 AF3 AF2 AF1 AF6 AF7 AF8 AF9 AF10 AF11 AF12 SYS TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 PB15 RTC_50Hz TIM1_CH3N TIM8_CH3N SPI1/SPI2/ I2S2/I2S2ext SPI2_MOSI I2S2_SD SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH TIM12_CH2 OTG_HS_ULPI_STP ETH_MDC FSMC/SDIO/ OTG_FS OTG_HS_DP SPI2_MISO I2S2ext_SD OTG_HS_ULPI_DIR ETH _MII_TXD2 SPI2_MOSI I2S2_SD TIM3_CH1 TIM8_CH1 I2S2_MCK TIM3_CH2 TIM8_CH2 TIM3_CH3 TIM8_CH3 MCO2 TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN USART6_TX USART6_RX USART6_CK USART3_TX/ UART4_TX USART3_RX UART4_RX USART3_CK UART5_TX I2S3_MCK SPI3_SCK/ I2S3S_CK SPI3_MISO I2S3ext_SD/ SPI3_MOSI I2S3_SD TIM3_ETR UART5_RX SDIO_CMD DCMI_D11 EVENTOUT CAN1_RX CAN1_TX FSMC_D2 FSMC_D3 EVENTOUT EVENTOUT USART2_CTS USART2_RTS USART2_TX USART2_RX USART2_CK USART3_TX USART3_RX USART3_CK USART3_CTS USART3_RTS FSMC_CLK FSMC_NOE FSMC_NWE FSMC_NWAIT FSMC_NE1/ FSMC_NCE2 FSMC_D13 FSMC_D14 FSMC_D15 FSMC_A16 FSMC_A17 FSMC_A18 FSMC_D0 EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT TIM4_CH1 TIM4_CH2 TIM4_CH3 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 D o c I D 0 2 2 1 5 2 R e v 2 / 5 7 1 6 7 OTG_HS_ULPI_NXT ETH _MII_TX_CLK ETH _RMII_TX_CLK ETH_MII_RXD0 ETH_RMII_RXD0 ETH _MII_RXD1 ETH _RMII_RXD1 SDIO_D6 DCMI_D0 SDIO_D7 DCMI_D1 SDIO_D0 DCMI_D2 AF13 DCMI AF014 AF15 EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT SDIO_D1 DCMI_D3 EVENTOUT SDIO_D2 DCMI_D8 EVENTOUT SDIO_D3 DCMI_D4 EVENTOUT SDIO_CK DCMI_D9 EVENTOUT S T M 3 2 F 4 0 5 x x , S T M 3 2 F 4 0 7 x x i P n o u t s i a n d p n d e s c r i p t i o n
Table 7. Alternate function mapping (continued) AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH TIM4_CH4 TIM4_ETR TIM9_CH1 TIM9_CH2 TIM1_ETR TIM1_CH1N TIM1_CH1 TIM1_CH2N TIM1_CH2 TIM1_CH3N TIM1_CH3 TIM1_CH4 TIM1_BKIN I2C2_SDA I2C2_SCL I2C2_SMBA TIM10_CH1 TIM11_CH1 / 5 8 1 6 7 D o c I D 0 2 2 1 5 2 R e v 2 AF0 SYS TRACECLK TRACED0 TRACED1 TRACED2 TRACED3 Port PD15 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 FSMC/SDIO/ OTG_FS FSMC_D1 AF13 DCMI AF014 AF15 EVENTOUT FSMC_NBL0 DCMI_D2 EVENTOUT FSMC_BLN1 DCMI_D3 ETH _MII_TXD3 FSMC_A23 FSMC_A19 EVENTOUT EVENTOUT EVENTOUT FSMC_A20 DCMI_D4 EVENTOUT FSMC_A21 DCMI_D6 EVENTOUT FSMC_A22 DCMI_D7 FSMC_D4 FSMC_D5 FSMC_D6 FSMC_D7 FSMC_D8 FSMC_D9 FSMC_D10 FSMC_D11 FSMC_D12 FSMC_A0 FSMC_A1 FSMC_A2 FSMC_A3 FSMC_A4 FSMC_A5 FSMC_NIORD FSMC_NREG FSMC_NIOWR FSMC_CD FSMC_INTR FSMC_A6 FSMC_A7 FSMC_A8 FSMC_A9 TIM13_CH1 TIM14_CH1 EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT DCMI_D12 EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT i P n o u t s a n d p n d e s c r i p t i o n i S T M 3 2 F 4 0 5 x x , S T M 3 2 F 4 0 7 x x
Table 7. Alternate function mapping (continued) Port PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PG11 PG12 PG13 PG14 PG15 PH0 PH1 PH2 PH3 PH4 PH5 PH6 PH7 PH8 PH9 PH10 PH11 PH12 PH13 PH14 AF0 SYS AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS AF13 DCMI AF014 AF15 FSMC_A10 FSMC_A11 FSMC_A12 FSMC_A13 FSMC_A14 FSMC_A15 FSMC_INT2 FSMC_INT3 ETH _PPS_OUT ETH _MII_TX_EN ETH _RMII_TX_EN ETH _MII_TXD0 ETH _RMII_TXD0 ETH _MII_TXD1 ETH _RMII_TXD1 FSMC_NE2/ FSMC_NCE3 FSMC_NCE4_1/ FSMC_NE3 FSMC_NCE4_2 FSMC_NE4 FSMC_A24 FSMC_A25 USART6_CK USART6_RTS USART6_RX USART6_RTS UART6_CTS USART6_TX USART6_CTS OTG_HS_ULPI_NXT ETH _MII_CRS ETH _MII_COL ETH _MII_RXD2 ETH _MII_RXD3 TIM12_CH1 TIM12_CH2 CAN1_TX EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT DCMI_D13 EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT DCMI_HSYNC EVENTOUT DCMI_D0 DCMI_D1 DCMI_D2 DCMI_D3 DCMI_D4 EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT I2C2_SCL I2C2_SDA I2C2_SMBA I2C3_SCL I2C3_SDA I2C3_SMBA TIM5_CH1 TIM5_CH2 TIM5_CH3 TIM8_CH1N TIM8_CH2N D o c I D 0 2 2 1 5 2 R e v 2 / 5 9 1 6 7 S T M 3 2 F 4 0 5 x x , S T M 3 2 F 4 0 7 x x i P n o u t s i a n d p n d e s c r i p t i o n
Table 7. Alternate function mapping (continued) AF0 SYS Port PH15 PI0 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 PI11 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 TIM1/2 TIM3/4/5 TIM8/9/10/11 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS SPI2_NSS I2S2_WS SPI2_SCK I2S2_CK SPI2_MISO I2S2ext_SD SPI2_MOSI I2S2_SD TIM8_CH3N TIM5_CH4 TIM8_CH4 TIM8_ETR TIM8_BKIN TIM8_CH1 TIM8_CH2 TIM8_CH3 CAN1_RX ETH _MII_RX_ER OTG_HS_ULPI_DIR AF13 DCMI AF014 AF15 DCMI_D11 EVENTOUT DCMI_D13 EVENTOUT DCMI_D8 DCMI_D9 EVENTOUT EVENTOUT DCMI_D10 EVENTOUT DCMI_D5 EVENTOUT DCMI_VSYNC EVENTOUT DCMI_D6 DCMI_D7 EVENTOUT EVENTOUT EVENTOUT EVENTOUT EVENTOUT / 6 0 1 6 7 D o c I D 0 2 2 1 5 2 R e v 2 i P n o u t s a n d p n d e s c r i p t i o n i S T M 3 2 F 4 0 5 x x , S T M 3 2 F 4 0 7 x x
分享到:
收藏