logo资料库

Combinatorial-Matrix-Theory.pdf

第1页 / 共220页
第2页 / 共220页
第3页 / 共220页
第4页 / 共220页
第5页 / 共220页
第6页 / 共220页
第7页 / 共220页
第8页 / 共220页
资料共220页,剩余部分请下载后查看
Foreword
Contents
Some Combinatorially Defined Matrix Classes
Permutations & Permutation Matrices
Alternating Sign Matrices
Tournaments & Tournament Matrices
Biblio
Sign Pattern Matrices
Intro to Sign Pattern Matrices
Potential Stability of Sign Patterns
Spectrally Arbitrary Sign Patterns
Refined Inertia of Sign Patterns
Inertially Arbitrary Sign Patterns
Biblio
Spectral Radius of Graphs
Graph-Theoretical Definitions
Adjacency Matrix & its Spectral Properties
Big Gun Approach
Eigenvector Approach
Characteristic Polynomial Approach
Walk Counting
Biblio
Group Inverse of Laplacian Matrix of Graph
Intro
Laplacian Matrix
Group Inverse
L# & Bottleneck Matrix
L# for Weighted Trees
Algebraic Connectivity
Joins
Resistance Distance
Computational Considerations
Closing Remarks
Biblio
Boundary Value Problems on Finite Networks
Intro
M-Matrix Inverse Problem
Difference Operators on Networks
Glossary
Networks with Boundaries
Self-Adjoint Boundary Value Problems
Monotonicity & Minimum Principle
Green & Poisson Kernels
Dirichlet-to-Robin Map
Characterization of Symmetric M-Matrices as Resistive Inverses
Distance-Regular Graphs with M-Property
Biblio
Richard A. Brualdi • Ángeles Carmona P. van den Driessche • Stephen Kirkland Dragan Stevanović Combinatorial Matrix Theory Editors for this volume: Andrés M. Encinas, Universitat Politècnica de Catalunya Margarida Mitjana, Universitat Politècnica de Catalunya
Richard A. Brualdi Mathematics Department University of Wisconsin Madison, WI, USA P. van den Driessche Department of Mathematics and Statistics University of Victoria Victoria, BC, Canada Dragan Stevanović Mathematical Institute Serbian Academy of Sciences and Arts Belgrade, Serbia Ángeles Carmona Departament de Matemàtiques Universitat Politècnica de Catalunya Barcelona, Spain Stephen Kirkland Department of Mathematics University of Manitoba Winnipeg, MB, Canada ISSN 2297-0312 (electronic) (eBook) ISSN 2297-0304 Advanced Courses in Mathematics - CRM Barcelona ISBN 978-3-319-70952-9 https://doi.org/10.1007/978-3-319-70953-6 Library of Congress Control Number: 2018935110 © Springer International Publishing AG, part of Springer Nature 2018 ISBN 978-3-319-70953-6
Foreword This book contains the notes of lectures delivered by Richard A. Brualdi, Angeles Carmona, Stephen Kirkland, Dragan Stevanovic and Pauline van den Driessche at the Centre de Recerca Matematica (CRM) in Bellaterra, Barcelona from June 29th to July 3rd, 2015. The Advanced Course on Combinatorial Matrix Theory was mainly addressed to PhD students and post-docs in related areas, and also to more established researchers who wanted to get involved in these subjects. Combinatorial matrix theory is a rich branch of matrix theory; it is both an active eld of research and a widespread toolbox for many scientists. Combina- torial properties of matrices are studied on the basis of qualitative rather than quantitative information, so that the ideas developed can provide consistent infor- mation about a model even when the data is incomplete or inaccurate. The theory behind qualitative methods can also contribute to the development of eective quantitative matrix methods. The topics covered in the Advanced Course included permutation matrices, alternating sign matrices, tournaments, sign pattern matrices, minimum rank and its distribution, boundary value problems on nite networks, the group inverse for the Laplacian matrix of a graph, and bounds on the spectral radius of the Laplacian matrix. The activity consisted of ve series of four lectures each. Accordingly, the material is divided into ve chapters in the book. There were also two short sessions devoted to informal presentations of the current work of most of the participants. The rst chapter corresponds to the lectures delivered by Richard A. Brualdi on some combinatorially dened matrix classes, specically on three families, namely permutation, alternating sign, and tournament matrices. Permutation ma- trices are the matrices associated with permutations, and it is shown that the Bruhat order on this symmetric group is related to Gaussian elimination and leads to the Bruhat decomposition of a nonsingular matrix. Alternating sign ma- trices are generalizations of permutation matrices, and the extension of Bruhat order is a lattice, specically its McNielle completion. A tournament matrix is the adjacency matrix corresponding to a tournament; that is, an orientation of the complete graph. The generation problem is presented and analyzed on loopy, Hankel, and skew-Hankel tournaments. The second chapter is devoted to the series of lectures given by Pauline van den Driessche on sign pattern matrices. It discusses the study of spectral
properties of matrices with a given sign pattern. Several classes of sign patterns are reviewed, including sign patterns that allow all possible spectra; those allowing all possible inertias; those allowing stability; and those that may give rise to Hopf bifurcation in associated dynamical systems. Some classes of these matrices are explored in more detail using techniques from matrix theory, graph theory, and analysis. Moreover, some open problems are suggested to encourage further work. Dragan Stevanovic delivered lectures on the spectral radius of graphs, col- lected in Chapter 3. The spectral radius of a graph is a tool to provide bounds of parameters related to the properties of a graph. More precisely, eigenvalues and eigenvectors of graph matrices have become standard mathematical tools nowa- days due to their wide applicability in network analysis and computer science, with the most prominent graph matrices being the adjacency and the Laplacian matrix. In this chapter, lower and upper limits of the spectral radius of adjacency and Laplacian matrices are addressed, with special attention to testing techniques and common properties of shapes of the boundaries. In addition, approximate formulas for the spectral radius of the adjacency matrix are also discussed. The fourth chapter contains the lectures delivered by Stephen Kirkland on the group inverse for the Laplacian matrix of a graph. In recent times, Laplacian matrices for undirected graphs have received a good deal of attention, in part because the spectral properties of the Laplacian matrix are related to a number of features of interest of the underlying graph. It turns out that a certain generalized inverse, the group inverse, of a Laplacian matrix also carries information about the graph in question. This chapter explores the group inverse of the Laplacian matrix and its relationship to graph structure. Connections with the algebraic connectivity and the resistance distance are made, and the computation of the group inverse of a Laplacian matrix is also considered from a numerical viewpoint. The last chapter, authored by Angeles Carmona, is devoted to the study of boundary value problems on nite networks. The starting point is the description of the basic dierence operators: the derivative, gradient, divergence, curl and Laplacian, or more generally, Schrodinger operators. The next step is to dene the discrete analogue of a manifold with a boundary, which includes the concept of outer normal eld and proves the Green identities. At that point, the focus is on some aspects of discrete potential theory. The discrete analog of the Green and Poisson kernels are dened and their relationship with the so-called Dirichlet- to-Neuman map established. Finally, some applications to matrix theory and to organic chemistry, such as the M-inverse problem and the Kirchho index compu- tation, are considered. We would like to express our gratitude to the director, Prof. Joaquim Bruna, and sta of the Centre de Recerca Matematica not only for their excellent job in organizing this course but also for their kindness and support during the event. We are also in debt to Elsevier, the Societat Catalana de Matematiques, and the Real Sociedad Matematica Espa~nola for their nancial support. Finally, we thank all the participants for their active involvement and spe- cially to the ve lecturers for their accurate preparation of these notes. We hope
that their publication will contribute to increasing knowledge of combinatorial matrix theory. Andres M. Encinas and Margarida Mitjana
Contents Foreword 1 Some Combinatorially Dened Matrix Classes By Richard A. Brualdi 1.1 Permutations and Permutation Matrices . . . . . . . . . . . . . . . 1.1.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3 Bruhat Order . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.4 Matrix Bruhat Decomposition . . . . . . . . . . . . . . . . 1.1.5 Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.6 . . . . . . . . 1.2 Alternating Sign Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Basic Properties 1.2.2 Other Views of ASMs . . . . . . . . . . . . . . . . . . . . . 1.2.3 The -determinant . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 Maximal ASMs . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.5 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.6 MacNeille Completion and the Bruhat Order . . . . . . . . 1.2.7 Bruhat Order Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.8 . . . . . . . . . . . . . . . 1.3.1 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . 1.3.2 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3 Loopy Tournaments and Their Generation . . . . . . . . . . 1.3.4 Hankel Tournaments and Their Generation . . . . . . . . . 1.3.5 Combinatorially Skew-Hankel Tournaments and Their 1.3 Tournaments and Tournament Matrices Involutions and Symmetric Integral Matrices Spectral Radius of ASMs Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 1 1 3 3 5 8 11 15 15 16 19 20 21 22 25 31 32 33 34 36 38 40 45
2 Sign Pattern Matrices By P. van den Driessche 2.1 Introduction to Sign Pattern Matrices . . . . . . . . . . . . . . . . 2.1.1 Notation and Denitions . . . . . . . . . . . . . . . . . . . . 2.2 Potential Stability of Sign Patterns . . . . . . . . . . . . . . . . . . Stability Denitions . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Stability of a Dynamical System . . . . . . . . . . . . . . . 2.2.2 2.2.3 Characterization of Sign Stability . . . . . . . . . . . . . . . 2.2.4 Basic Facts for Potential Stability . . . . . . . . . . . . . . 2.2.5 Known Results on Potential Stability for Small Orders . . . 2.2.6 Sucient Condition for Potential Stability . . . . . . . . . . 2.2.7 Construction of Higher-Order Potentially Stable Sign Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.8 Number of Nonzero Entries . . . . . . . . . . . . . . . . . . 2.2.9 Open Problems Related to Potential Stability . . . . . . . . 2.3 Spectrally Arbitrary Sign Patterns . . . . . . . . . . . . . . . . . . 2.3.1 Some Denitions Relating to Spectra of Sign Patterns . . . 2.3.2 A Family of Spectrally Arbitrary Sign Patterns . . . . . . . 2.3.3 Minimal Spectrally Arbitrary Patterns and Number of Nonzero Entries 2.5 . . . . . . . . . . . . . . . . . . . . . . . . 2.3.4 Reducible Spectrally Arbitrary Sign Patterns . . . . . . . . Some Results on Potentially Nilpotent Sign Patterns . . . . 2.3.5 2.3.6 Some Open Problems Concerning SAPs . . . . . . . . . . . 2.4 Rened Inertia of Sign Patterns . . . . . . . . . . . . . . . . . . . . 2.4.1 Denition and Maximum Number of Rened Inertias . . . . 2.4.2 The Set of Rened Inertias Hn . . . . . . . . . . . . . . . . Sign Patterns of Order 3 and H3 . . . . . . . . . . . . . . . 2.4.3 Sign Patterns of Order 4 and H4 . . . . . . . . . . . . . . . 2.4.4 2.4.5 Sign Patterns with All Diagonal Entries Negative . . . . . . 2.4.6 Detecting Periodic Solutions in Dynamical Systems . . . . . 2.4.7 . . . . . . . . . . . . Inertially Arbitrary Sign Patterns . . . . . . . . . . . . . . . . . . . 2.5.1 Denition and Relation to Other Properties . . . . . . . . . 2.5.2 Generalization of the Nilpotent-Jacobian Method . . . . . . 2.5.3 Reducible IAPs . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.4 A Glimpse at Zero-Nonzero Patterns . . . . . . . . . . . . . 2.5.5 A Taste of More General Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Some Open Problems Concerning Hn Some Open Problems Concerning IAPs 47 47 47 48 48 49 50 51 52 52 54 56 57 57 57 59 61 62 63 64 64 64 65 66 66 67 68 72 73 73 74 76 76 77 78 79
3 Spectral Radius of Graphs By Dragan Stevanovic 83 83 3.1 Graph-Theoretical Denitions . . . . . . . . . . . . . . . . . . . . . 85 3.2 The Adjacency Matrix and Its Spectral Properties . . . . . . . . . 89 3.3 The Big Gun Approach . . . . . . . . . . . . . . . . . . . . . . . . 3.4 The Eigenvector Approach . . . . . . . . . . . . . . . . . . . . . . . 95 3.5 The Characteristic Polynomial Approach . . . . . . . . . . . . . . . 105 3.6 Walk Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4 The Group Inverse of the Laplacian Matrix of a Graph 131 By Stephen Kirkland 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.2 The Laplacian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.3 The Group Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.4 L# and the Bottleneck Matrix . . . . . . . . . . . . . . . . . . . . 141 4.5 L# for Weighted Trees . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.6 Algebraic Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 148 4.7 Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.8 Resistance Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.9 Computational Considerations . . . . . . . . . . . . . . . . . . . . 160 4.10 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5 Boundary Value Problems on Finite Networks By Angeles Carmona 173 5.3.1 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.2 The M -Matrix Inverse Problem . . . . . . . . . . . . . . . . . . . . 174 5.3 Dierence Operators on Networks . . . . . . . . . . . . . . . . . . . 176 Schrodinger Operators . . . . . . . . . . . . . . . . . . . . . 181 5.4 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 5.5 Networks with Boundaries . . . . . . . . . . . . . . . . . . . . . . . 185 5.6 Self-Adjoint Boundary Value Problems . . . . . . . . . . . . . . . . 188 5.7 Monotonicity and the Minimum Principle . . . . . . . . . . . . . . 193 5.8 Green and Poisson Kernels . . . . . . . . . . . . . . . . . . . . . . 195 5.9 The Dirichlet-to-Robin Map . . . . . . . . . . . . . . . . . . . . . . 199 5.10 Characterization of Symmetric M -Matrices as Resistive Inverses . 201 5.10.1 The Kirchho Index and Eective Resistances . . . . . . . 202 5.10.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . 204 5.11 Distance-regular Graphs with the M -Property . . . . . . . . . . . . 207 5.11.1 Strongly Regular Graphs . . . . . . . . . . . . . . . . . . . 209 5.11.2 Distance-regular Graphs with Diameter 3 . . . . . . . . . . 210 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
分享到:
收藏