Contents
Preface to the Instructor
Preface to the Student
Acknowledgments
Chapter 1
Vector Spaces
Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . .
Definition of Vector Space . . . . . . . . . . . . . . . . . . . . . .
Properties of Vector Spaces . . . . . . . . . . . . . . . . . . . . .
Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sums and Direct Sums . . . . . . . . . . . . . . . . . . . . . . . .
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 2
Finite-Dimensional Vector Spaces
Span and Linear Independence . . . . . . . . . . . . . . . . . . .
Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 3
Linear Maps
Definitions and Examples . . . . . . . . . . . . . . . . . . . . . .
Null Spaces and Ranges . . . . . . . . . . . . . . . . . . . . . . .
The Matrix of a Linear Map . . . . . . . . . . . . . . . . . . . . .
Invertibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
ix
xiii
xv
1
2
4
11
13
14
19
21
22
27
31
35
37
38
41
48
53
59
vi
Contents
Chapter 4
Polynomials
Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
Complex Coefficients
Real Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 5
Eigenvalues and Eigenvectors
Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . . .
Polynomials Applied to Operators . . . . . . . . . . . . . . . . .
Upper-Triangular Matrices . . . . . . . . . . . . . . . . . . . . .
Diagonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . .
Invariant Subspaces on Real Vector Spaces . . . . . . . . . . .
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63
64
67
69
73
75
76
80
81
87
91
94
Chapter 6
Inner-Product Spaces
97
Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Norms
Orthonormal Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Orthogonal Projections and Minimization Problems . . . . . . 111
Linear Functionals and Adjoints . . . . . . . . . . . . . . . . . . 117
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Chapter 7
Operators on Inner-Product Spaces
127
Self-Adjoint and Normal Operators . . . . . . . . . . . . . . . . 128
The Spectral Theorem . . . . . . . . . . . . . . . . . . . . . . . . 132
Normal Operators on Real Inner-Product Spaces . . . . . . . . 138
Positive Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Polar and Singular-Value Decompositions . . . . . . . . . . . . 152
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Chapter 8
Operators on Complex Vector Spaces
163
Generalized Eigenvectors . . . . . . . . . . . . . . . . . . . . . . 164
. . . . . . . . . . . . . . . . . . . 168
The Characteristic Polynomial
Decomposition of an Operator . . . . . . . . . . . . . . . . . . . 173
Contents
vii
Square Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
The Minimal Polynomial . . . . . . . . . . . . . . . . . . . . . . . 179
Jordan Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Chapter 9
Operators on Real Vector Spaces
193
Eigenvalues of Square Matrices . . . . . . . . . . . . . . . . . . . 194
Block Upper-Triangular Matrices . . . . . . . . . . . . . . . . . . 195
. . . . . . . . . . . . . . . . . . . 198
The Characteristic Polynomial
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Chapter 10
Trace and Determinant
213
Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
. . . . . . . . . . . . . . . . . . . . 222
Determinant of an Operator
Determinant of a Matrix . . . . . . . . . . . . . . . . . . . . . . . 225
Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Symbol Index
Index
247
249
Preface to the Instructor
You are probably about to teach a course that will give students
their second exposure to linear algebra. During their first brush with
the subject, your students probably worked with Euclidean spaces and
matrices. In contrast, this course will emphasize abstract vector spaces
and linear maps.
The audacious title of this book deserves an explanation. Almost
all linear algebra books use determinants to prove that every linear op-
erator on a finite-dimensional complex vector space has an eigenvalue.
Determinants are difficult, nonintuitive, and often defined without mo-
tivation. To prove the theorem about existence of eigenvalues on com-
plex vector spaces, most books must define determinants, prove that a
linear map is not invertible if and only if its determinant equals 0, and
then define the characteristic polynomial. This tortuous (torturous?)
path gives students little feeling for why eigenvalues must exist.
In contrast, the simple determinant-free proofs presented here of-
fer more insight. Once determinants have been banished to the end
of the book, a new route opens to the main goal of linear algebra—
understanding the structure of linear operators.
This book starts at the beginning of the subject, with no prerequi-
sites other than the usual demand for suitable mathematical maturity.
Even if your students have already seen some of the material in the
first few chapters, they may be unaccustomed to working exercises of
the type presented here, most of which require an understanding of
proofs.
• Vector spaces are defined in Chapter 1, and their basic properties
are developed.
• Linear independence, span, basis, and dimension are defined in
Chapter 2, which presents the basic theory of finite-dimensional
vector spaces.
ix
x
Preface to the Instructor
• Linear maps are introduced in Chapter 3. The key result here
is that for a linear map T , the dimension of the null space of T
plus the dimension of the range of T equals the dimension of the
domain of T .
• The part of the theory of polynomials that will be needed to un-
derstand linear operators is presented in Chapter 4. If you take
class time going through the proofs in this chapter (which con-
tains no linear algebra), then you probably will not have time to
cover some important aspects of linear algebra. Your students
will already be familiar with the theorems about polynomials in
this chapter, so you can ask them to read the statements of the
results but not the proofs. The curious students will read some
of the proofs anyway, which is why they are included in the text.
• The idea of studying a linear operator by restricting it to small
subspaces leads in Chapter 5 to eigenvectors. The highlight of the
chapter is a simple proof that on complex vector spaces, eigenval-
ues always exist. This result is then used to show that each linear
operator on a complex vector space has an upper-triangular ma-
trix with respect to some basis. Similar techniques are used to
show that every linear operator on a real vector space has an in-
variant subspace of dimension 1 or 2. This result is used to prove
that every linear operator on an odd-dimensional real vector space
has an eigenvalue. All this is done without defining determinants
or characteristic polynomials!
• Inner-product spaces are defined in Chapter 6, and their basic
properties are developed along with standard tools such as ortho-
normal bases, the Gram-Schmidt procedure, and adjoints. This
chapter also shows how orthogonal projections can be used to
solve certain minimization problems.
• The spectral theorem, which characterizes the linear operators for
which there exists an orthonormal basis consisting of eigenvec-
tors, is the highlight of Chapter 7. The work in earlier chapters
pays off here with especially simple proofs. This chapter also
deals with positive operators, linear isometries, the polar decom-
position, and the singular-value decomposition.