logo资料库

Digital Image Processing - Third Edition.pdf

第1页 / 共738页
第2页 / 共738页
第3页 / 共738页
第4页 / 共738页
第5页 / 共738页
第6页 / 共738页
第7页 / 共738页
第8页 / 共738页
资料共738页,剩余部分请下载后查看
Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt Copyright © 2001 John Wiley & Sons, Inc. ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic) DIGITAL IMAGE PROCESSING
DIGITAL IMAGE PROCESSING PIKS Inside Third Edition WILLIAM K. PRATT PixelSoft, Inc. Los Altos, California A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto
Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright  2001 by John Wiley and Sons, Inc., New York. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought. ISBN 0-471-22132-5 This title is also available in print as ISBN 0-471-37407-5. For more information about Wiley products, visit our web site at www.Wiley.com.
To my wife, Shelly whose image needs no enhancement
CONTENTS Preface Acknowledgments PART 1 CONTINUOUS IMAGE CHARACTERIZATION 1 Continuous Image Mathematical Characterization 1.1 Image Representation, 3 1.2 Two-Dimensional Systems, 5 1.3 Two-Dimensional Fourier Transform, 10 1.4 Image Stochastic Characterization, 15 2 Psychophysical Vision Properties 2.1 Light Perception, 23 2.2 Eye Physiology, 26 2.3 Visual Phenomena, 29 2.4 Monochrome Vision Model, 33 2.5 Color Vision Model, 39 3 Photometry and Colorimetry 3.1 Photometry, 45 3.2 Color Matching, 49 xiii xvii 1 3 23 45 vii
viii CONTENTS 3.3 Colorimetry Concepts, 54 3.4 Tristimulus Value Transformation, 61 3.5 Color Spaces, 63 PART 2 DIGITAL IMAGE CHARACTERIZATION 4 Image Sampling and Reconstruction 4.1 Image Sampling and Reconstruction Concepts, 91 4.2 Image Sampling Systems, 99 4.3 Image Reconstruction Systems, 110 5 Discrete Image Mathematical Representation 5.1 Vector-Space Image Representation, 121 5.2 Generalized Two-Dimensional Linear Operator, 123 5.3 Image Statistical Characterization, 127 5.4 Image Probability Density Models, 132 5.5 Linear Operator Statistical Representation, 136 6 Image Quantization 6.1 Scalar Quantization, 141 6.2 Processing Quantized Variables, 147 6.3 Monochrome and Color Image Quantization, 150 89 91 121 141 PART 3 DISCRETE TWO-DIMENSIONAL LINEAR PROCESSING 159 7 Superposition and Convolution 7.1 Finite-Area Superposition and Convolution, 161 7.2 Sampled Image Superposition and Convolution, 170 7.3 Circulant Superposition and Convolution, 177 7.4 Superposition and Convolution Operator Relationships, 180 8 Unitary Transforms 8.1 General Unitary Transforms, 185 8.2 Fourier Transform, 189 8.3 Cosine, Sine, and Hartley Transforms, 195 8.4 Hadamard, Haar, and Daubechies Transforms, 200 8.5 Karhunen–Loeve Transform, 207 9 Linear Processing Techniques 9.1 Transform Domain Processing, 213 9.2 Transform Domain Superposition, 216 161 185 213
CONTENTS ix 9.3 Fast Fourier Transform Convolution, 221 9.4 Fourier Transform Filtering, 229 9.5 Small Generating Kernel Convolution, 236 PART 4 IMAGE IMPROVEMENT 10 Image Enhancement 10.1 Contrast Manipulation, 243 10.2 Histogram Modification, 253 10.3 Noise Cleaning, 261 10.4 Edge Crispening, 278 10.5 Color Image Enhancement, 284 10.6 Multispectral Image Enhancement, 289 11 Image Restoration Models 11.1 General Image Restoration Models, 297 11.2 Optical Systems Models, 300 11.3 Photographic Process Models, 304 11.4 Discrete Image Restoration Models, 312 12 Point and Spatial Image Restoration Techniques 12.1 Sensor and Display Point Nonlinearity Correction, 319 12.2 Continuous Image Spatial Filtering Restoration, 325 12.3 Pseudoinverse Spatial Image Restoration, 335 12.4 SVD Pseudoinverse Spatial Image Restoration, 349 12.5 Statistical Estimation Spatial Image Restoration, 355 12.6 Constrained Image Restoration, 358 12.7 Blind Image Restoration, 363 13 Geometrical Image Modification 13.1 Translation, Minification, Magnification, and Rotation, 371 13.2 Spatial Warping, 382 13.3 Perspective Transformation, 386 13.4 Camera Imaging Model, 389 13.5 Geometrical Image Resampling, 393 PART 5 IMAGE ANALYSIS 14 Morphological Image Processing 241 243 297 319 371 399 401 14.1 Binary Image Connectivity, 401 14.2 Binary Image Hit or Miss Transformations, 404 14.3 Binary Image Shrinking, Thinning, Skeletonizing, and Thickening, 411
x CONTENTS 14.4 Binary Image Generalized Dilation and Erosion, 422 14.5 Binary Image Close and Open Operations, 433 14.6 Gray Scale Image Morphological Operations, 435 15 Edge Detection 15.1 Edge, Line, and Spot Models, 443 15.2 First-Order Derivative Edge Detection, 448 15.3 Second-Order Derivative Edge Detection, 469 15.4 Edge-Fitting Edge Detection, 482 15.5 Luminance Edge Detector Performance, 485 15.6 Color Edge Detection, 499 15.7 Line and Spot Detection, 499 16 Image Feature Extraction 16.1 Image Feature Evaluation, 509 16.2 Amplitude Features, 511 16.3 Transform Coefficient Features, 516 16.4 Texture Definition, 519 16.5 Visual Texture Discrimination, 521 16.6 Texture Features, 529 17 Image Segmentation 17.1 Amplitude Segmentation Methods, 552 17.2 Clustering Segmentation Methods, 560 17.3 Region Segmentation Methods, 562 17.4 Boundary Detection, 566 17.5 Texture Segmentation, 580 17.6 Segment Labeling, 581 18 Shape Analysis 18.1 Topological Attributes, 589 18.2 Distance, Perimeter, and Area Measurements, 591 18.3 Spatial Moments, 597 18.4 Shape Orientation Descriptors, 607 18.5 Fourier Descriptors, 609 19 Image Detection and Registration 19.1 Template Matching, 613 19.2 Matched Filtering of Continuous Images, 616 19.3 Matched Filtering of Discrete Images, 623 19.4 Image Registration, 625 443 509 551 589 613
分享到:
收藏