logo资料库

马尔科夫链的平稳分布.pdf

第1页 / 共244页
第2页 / 共244页
第3页 / 共244页
第4页 / 共244页
第5页 / 共244页
第6页 / 共244页
第7页 / 共244页
第8页 / 共244页
资料共244页,剩余部分请下载后查看
Main Talk
Stationary Distributions
Fundamental Theorem of Markov Chains
Computing Stationary Distributions
Example: A Simple Queue
Random Walks on Undirected Graphs
Application: An s-t Connectivity Algorithm
Parrondo's Paradox
Outline Markov Chains and Stationary Distributions Matt Williamson1 1Lane Department of Computer Science and Electrical Engineering West Virginia University March 19, 2012 Williamson Markov Chains and Stationary Distributions
Outline Outline 1 Stationary Distributions Fundamental Theorem of Markov Chains Computing Stationary Distributions Example: A Simple Queue Williamson Markov Chains and Stationary Distributions
Outline Outline 1 Stationary Distributions Fundamental Theorem of Markov Chains Computing Stationary Distributions Example: A Simple Queue 2 Random Walks on Undirected Graphs Application: An s-t Connectivity Algorithm Williamson Markov Chains and Stationary Distributions
Outline Outline 1 Stationary Distributions Fundamental Theorem of Markov Chains Computing Stationary Distributions Example: A Simple Queue 2 Random Walks on Undirected Graphs Application: An s-t Connectivity Algorithm 3 Parrondo’s Paradox Williamson Markov Chains and Stationary Distributions
Stationary Distributions Random Walks on Undirected Graphs Parrondo’s Paradox Fundamental Theorem of Markov Chains Computing Stationary Distributions Example: A Simple Queue Outline 1 Stationary Distributions Fundamental Theorem of Markov Chains Computing Stationary Distributions Example: A Simple Queue 2 Random Walks on Undirected Graphs Application: An s-t Connectivity Algorithm 3 Parrondo’s Paradox Williamson Markov Chains and Stationary Distributions
Stationary Distributions Random Walks on Undirected Graphs Parrondo’s Paradox Fundamental Theorem of Markov Chains Computing Stationary Distributions Example: A Simple Queue Probability Matrix Recall Let P be a one-step probability matrix of a Markov chain such that  P = P0,0 P0,1 P1,0 P1,1 ... ... Pi,1 Pi,0 ... ... · · · P0,j · · · P1,j ... ... · · · Pi,j ... ... · · · · · · ... · · · ...  . Williamson Markov Chains and Stationary Distributions
Stationary Distributions Random Walks on Undirected Graphs Parrondo’s Paradox Fundamental Theorem of Markov Chains Computing Stationary Distributions Example: A Simple Queue Probability Matrix Recall Let P be a one-step probability matrix of a Markov chain such that  P = P0,0 P0,1 P1,0 P1,1 ... ... Pi,1 Pi,0 ... ... · · · P0,j · · · P1,j ... ... · · · Pi,j ... ... · · · · · · ... · · · ...  . Let ¯p(t) = (p0(t), p1(t), p2(t), . . . ) be the vector giving the probability distribution of the state of the chain at time t. Williamson Markov Chains and Stationary Distributions
Stationary Distributions Random Walks on Undirected Graphs Parrondo’s Paradox Fundamental Theorem of Markov Chains Computing Stationary Distributions Example: A Simple Queue Probability Matrix Recall Let P be a one-step probability matrix of a Markov chain such that  P = P0,0 P0,1 P1,0 P1,1 ... ... Pi,1 Pi,0 ... ... · · · P0,j · · · P1,j ... ... · · · Pi,j ... ... · · · · · · ... · · · ...  . Let ¯p(t) = (p0(t), p1(t), p2(t), . . . ) be the vector giving the probability distribution of the state of the chain at time t. Then, ¯p(t) = ¯p(t − 1) · P Williamson Markov Chains and Stationary Distributions
分享到:
收藏