2013 年四川省资阳市中考数学真题及答案
全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 4 页。全卷满分 120 分。
考试时间共 120 分钟。
注意事项:
1.答题前,请考生 务必在答题卡上正确填写自己的姓名、准考证号和座位号。考试结
束,将试卷和答题卡一并交回。
2.选择题每小题选出的答案须用 2B 铅笔在答题卡上把对应题目....的答案标号涂黑。如需
改动,用橡皮擦擦净后,再选涂其它答案。非选择题须用黑色墨水的钢笔或签字笔在答题卡
上对应题号位置作答,在试卷上作答,答案无效。
第Ⅰ卷(选择题 共 30 分)
一、选择题:(本大题共 10 个小题,每小题 3 分,共 30 分)在每小题给出的四个选项
中,只有一个选项符合题意.
1.16 的 平方根是
A.4
B.±4
C.8
D.±8
2.一个正多边形的每个外角都等于 36°,那么它是
A.正六边形
B.正八边形
C.正十边形
D.正十二边形
3.在一个不透明的盒子里,装有 4 个黑球和若干个白球,它们除颜色外没有任何其他
区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球 40 次,
其中 10 次摸到黑球,则估计盒子中大约有白球
A.12 个
B.16 个
C.
20 个
D.30 个
4.在函数 y =
1
1x
中,自变量 x的取值范围是
A.x≤1
B.x≥1
5.如图1,点E在正方形ABCD内,满足
影部分的面积是
C.x<1
90
AEB
D.x>1
,AE=6,BE=8,则阴
A. 48
B. 60
C. 76
D.80
图 1
6.资阳市 2012 年财政收入取得重大突破,地方公共财政收入用四舍五入法 取近似值
后为 27.39 亿元,那么这个数值
A.精确到亿位
B.精确到百分位
C.精确到千万位
D.精确到百万位
7.钟面上的分针的长为 1,从 9 点到 9 点 30 分,分针在钟面上扫过的面积是
A. 1
2
B. 1
4
C.
1
8
D.
8.在芦山地震抢险时,太平镇部分村庄需 8 组战士步行运送物资,要求每组分配的人
数相同.若按每 组人数比预定人数多分配 1 人,则总数会超过 100 人;若按每组人数比预定
人数少分配 1 人,则总数不够 90 人 ,那么预定每组分配的人数是
A.10 人
B.11 人
C.12 人
D.13 人
9.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征
10.如图 2,抛物线
ax
顶点在第三象限,设 P= a b c
+ (
bx c a
y
,则 P的取值范围是
0)
2
过点(1,0)和点(0,-2),且
图 2
A.-4<P<0
C.-2<P<0
B.-4<P<-2
D.-1<P<0
第Ⅱ卷(非选择题 共 90 分)
二、填空题:(本大题共 6 个小题,每小题 3 分,共 18 分)把答案直接填在题中横线上.
11.(-a2b)2·a =_______.
12.若一组数据 2、-1、0、2、-1、a的众数为 2,则这组数据的平均数为______
13.在矩形 ABCD中,对角线 AC、BD相交于点 O,若∠AOB=60°,AC=10,则
AB=_____.
14.在一次函数 (2
15.如图 3,在 Rt△ABC中,∠C=90°,∠B=60°,点 D是 BC边上的点,CD=1,
1
中,y随x的增大而增大,则k的取值范围为_______.
)
k x
y
将△ABC沿直线 AD翻折,使点 C落在 AB边上的点 E处,若点 P是直线 AD上的动点,
则△PEB的周长的最小值是________.
16.已知在直线上有 n(n≥2 的正整数)个点,每相邻两点间距离为 1,从左
图 3
边第 1 个点起跳,且同时满足以下三个条件:①每次跳跃均尽可能最大;②跳 n次
后必须回到第 1 个点;③这 n次跳跃将每个点全部到达.设跳过的所有路程之和为 Sn,则
25S =______________.
三、解答题:(本大题共 8 个小题,共 72 分)解答应写出必要的文字说明、证明过程或
演算步骤.
17.(本小题满分 7 分)解方程: 2
x
x
+
4
x
2
2
1
x
2
18.(本小题满分 8 分)体考在即,初三(1)班的课题研究小组对本年级 530 名学生的体育达
标情况进行调查,制作出图 4 所示的统计图,其中 1 班有 50 人.(注:30 分及以上为达标,满分
50 分.)
根据统计图,解答下面问题:
(1)初三(1)班学生体育达标率和本年级其余各班学生体育达标率各是多少?(4 分)
(2)若除初三(1)班外其 余班级学生体育考试成绩在 30—40 分的有 120 人,请补全扇
形统计图;(注:请在图中注明分数段所对应的圆心角的度数)(2 分)
( 3)如果要求全年级学
生的体育达标率不低于 90%,
试问在本次调查中,该年级全
体学生的体育达标率是否符
合要求?(2 分)
19.(本小题满分 8 分)
在关于 x、y的二元一次 方程
组
x
2
2
x
y
y
a
1
中.
(1)若 a =3,求方程组的解;(4 分)
图 4
(2)若
S
(3
a x
,当 a为何值时, S 有最值;(4 分)
y
)
20.(本小题满分 8 分)在⊙O中,AB为直径,点 C
为圆上一点,将劣弧沿弦 AC翻折交 AB于点 D,连结 CD.
(1)如图 5-1,若点 D与圆心 O重合,AC=2,求⊙O
的半径 r;(6 分)
(2)如图 5-2,若点 D与圆心O不重合,∠BAC=25°,
请直接写出 ∠DCA的度数. (2 分)
21.(本小题满分 9 分)如图 6,已知直线 l分别与 x
轴、y轴交于 A、B两点,与双曲线 a
x
y
(a≠0,x>0)
图 5-1
图 5-2
分别交于 D、E两点.
(1)若点 D的坐标为(4,1),点 E的坐标为(1,4):
① 分别求出直线 l与双曲线的解析式;(3 分)
② 若将直线 l向下平移 m(m>0)个单位,当 m为何值时,直线 l
与双曲线有且只有一个交点?(4 分)
(2)假设点 A的坐标为(a,0),点 B的坐标为(0,b),点 D为线段
AB的 n等分点,请直接写出 b的值. (2 分)
22.(本小题满分 9 分)钓鱼 岛历来是中国领土,以它为圆心在周围 12
图 6
海里范围内均属于禁区,不允许它国船支进入.如图 7,今有一中国海监船在位于钓鱼岛 A正
南方向距岛 60 海里的 B处海域巡逻,值班人员发现在钓鱼岛的正西方向 52 海里的 C处有一
艘日本渔船,正以 9 节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿
北偏西 30°的方向以 12 节的速度前往拦截,其间多次发出警告,2 小时后海监船到达 D处,
与此同时日本渔船到达 E处,此时海监船再次发出严重警告.
(1)当日本渔船收到严重警告信号后,必须沿北偏东转向多少度
航行,才能恰好避免进入钓鱼岛 12 海里禁区?(4 分)
(2)当日本渔船不听严重警告信号,仍按原速度、原方向继续前
进,那么海监船必须尽快到达距岛 12 海里,且位于线段 AC上的 F处
强制拦截渔船,问海监船能否比日本渔船先到达 F处?(5 分)
(注:① 中国海监船的最大航速为 18 节,1 节=1 海里/时;②
参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,
2 1.4 , 3 1.7 )
图 7
23.(本小题满分 11 分)在一个边长为 a(单位:cm)的正方形 ABCD中,点 E、M分别是
线段 AC、CD上的动点,连结 DE并延长交正方形的边于点 F,过点 M作 MN⊥DF于 H,交 AD于 N.
(1)如图 8-1,当点 M与点 C重合,求证:DF=MN;(4 分)
(2)如图 8-2,假设点 M从点 C出发,以 1cm/s 的速度沿 CD向点 D运动,点 E同时从
点 A出发,以 2 cm/s 速度沿 AC向点 C运动,运动时间为 t(t>0):
① 判断命题“当点 F是边 AB中点时,则点 M是边 CD的三等分点”的真假,并说明理由.
(4 分)
② 连结 FM、FN,△MNF能否为等腰三角形?若能,请写出 a、t之间的关系;若不能,
请说明理由. (3 分)
图 8-1
图 8-2
图 9
24.(本小题满分 12 分)如图 9,四边形 ABCD是平行四边形,过点 A、C、D作抛物线
ax
,与 x轴的另一交点为E,连结 CE,点 A、B、D的坐标分别为(-2,0)、
bx
0)
2
(
y
c a
(3,0)、(0,4).
(1)求抛物线的解析式;(3 分)
(2)已知抛物线的对称轴 l交 x轴于点 F,交线段 CD于点 K,点 M、N分别是直线 l
和 x轴上的动点,连结 MN,当线段 MN恰好被 BC垂直平分时,求点 N的坐标;(4 分)
(3)在满足(2)的条件下,过点 M作一条直线,使之将四边 形 AECD的面积分为 3∶4
的两部分,求出该直线的解析式. (5 分)
参考答案及评分意见
说 明:
1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.
2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,
请参照本答案及评分意见给分.
3. 考生的解答可以根据具体问题合理省略非关键步骤.
4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,
如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得
超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几
个相对独立的得分点,其中一处错误不影响其他得分点的得分.
5. 给分和扣分都以 1 分为基本单位.
6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高
或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严
不同.
一、选择题(每小题 3 分,共 10 个小题,满分 30 分):
1-5. BCADC;6-10. DACBA.
二、填空题(每小题 3 分,共 6 个小题,满分 18 分):
11.
5 2a b ;12. 2
3
;13. 5;14. k<2;15.
3+1 ;16. 312.
三、解答题(共 8 个小题,满分 72 分):
17.
2
x
x
4
x
2(
x
x
3
····················································································· 3 分
2)
x
x
·························································································4 分
2
x
4 2
x
2
2
x ······································································································ 6 分
x 是原方程的解.············································································ 7 分
经检验, 3
18. (1) 初三(1)班体育达标率为 90%,
初三年级其余班级体育达标率为 1-12.5%=87.5%;················································ 4 分
(2) 成绩在 30—40 分所对应的圆心角为 90°,40—50 分所对应的圆心角为 225°.····· 6 分
(3) 全年级同学的体育达标率为( 420+45)÷530≈87.8%<90%,所以不达标.··········· 8 分
19.(1)
x
y
(2) 易求 3
x
a
则
,····························································································4 分
1
1
,················································································5 分
,································································································6 分
1
a
S
y
2
a
∴
S
2
a
a
(
a
21
)
2
,··············································································7 分
1
4
∴当
a 时, S 有最小值.·············································································8 分
20. (1) 过点 O作 AC的垂线交 AC于 E、交劣弧于 F,由题意可知,OE=EF,············1 分
∵ OE⊥AC,∴AE= 1
AC ,················································································ 3 分
2
在 Rt△AOE中, 2
,··································································· 4 分
2
2
AE
1
2
1
2
AO OE
,∴r= 2 3
3
∴ 2
r
1 (
2
r
)
.············································································· 6 分
(2)∠DCA=40°.···························································································8 分
21. (1) ①易求反比例函数的解析式为 4
,·····················································1 分
x
直线 AB的解析式为 y = -x+5;········································································· 3 分
,······················ 4 分
② 依题意可设向下平移 m(m>0)个单位后解析式为
y
y
x
5
m
由
5
x
y
y
4
x
m
,得 2
x
(5
)
m x
,·························································5 分
4 0
∵ 平移后直线 l与反比例函数有且只有一个交点,∴△=
9m (舍去).·············································································6 分
∴ 1 1m , 2
即当 1m 时,直线 l与反比例函数有且只有一个交点;········································· 7 分
.································································································ 9 分
(2)
2
(
m
5)
2
16 0
,
b
n
n
1
22. (1) 过点 E作⊙A的切线 EG,连结 AG,
AE=AC-CE=52-18=34,AG=12,············································································2 分
sin∠GEA= AG
≈0.35,··················································································· 3 分
AE
∴转向的角度至少应为北偏东 69.5 度;······························································ 4 分
(2) 过点 D作 DH⊥AB于 H,
由题意知,BD=24,∴DH=12,BH=12 3 ,···························································· 5 分
易求四边形 FDHA为矩形,∴FD=AH=60-12 3 ,·····················································7 分
∴ 海监船到达 F处的时间为(60-12 3 )÷18≈ 2.2 时,·····································8 分
日本渔船到达 F处的时间为(34-12)÷9≈2.4 时,
∴海监船比日本船先到达 F处.·········································································· 9 分
23. (1) 易证△ADF≌△MDN,则 DF=MN;·························································· 4 分
(2)① 解法一:
该命题为真命题.···························································································· 5 分
过点 E作 EG⊥AD于点 G,
依题意得,AE= 2 t ,易求 AG=EG=t,································································· 6 分
CM=t,DG=DM= a t
易证△DGE≌△MDN,∴ DN EG t CM
由△ADF∽△DMN,得 DN
····························································7 分
,
AF
DM AD
又∵点 F是线段 AB中点,AB=AD,
,∴DM=2DN,即点 M是 CD的三等分点.·········································8 分
∴
AF DN
AB DM
1
2
解法二:该命题为真命题.················································································ 5 分
,
AF
易证△AEF∽△CED, AE
EC CD
AF
易证△ADF∽△DMN, DN
DM AD
又∵AD=CD,∴ DN
AE
,·············································································· 6 分
DM EC
,
依题意得:AE= 2 t ,CM= t,EC= 2
a
2
t
,DM= a t
∴
2
t
2
a
DN
a t
2
t
, DN t CM
···································································· 7 分
又∵点 F是线段 AB中点 ,AB=AD,
∴
AF DN
AB DM
,∴DM=2DN,即 点 M是 CD的三等分点.········································ 8 分
1
2
又由△DAF∽△MDN,得 DN
② 假设 FN=MN,由 DM=AN知△AFN≌△DNM,∴AF=DN= t,
at
a t
AF
DM AD
,∴ t
a t
AF
a
,∴
AF
,
∴ at
a t
= t, t=0;
∴FN=MN不成立;····························································································9 分
假设 FN=MF,由 MN⊥DF知,HN=HM,∴DN=DM=MC,此时点 F与点 B重合,
∴ 当 t = 1
2
a 时, FN=MF;·······················································································10 分
假设 FN=MN,显然点 F在 BC边上,易得△MFC≌△NMD,∴FC=DM= a t ,
又由△NDM∽△DCF,∴ DN DC
DM FC
,∴ t
a t
a
FC
(
a a t
,∴
FC
)
t
a a t
∴ (
)
= a t ,∴ a
t ,此时点 F与点 C重合,
t 时,FN=MN.······················································································· 11 分
t
即当 a
24. (1) ∵点 A、B、D的坐标分别为(-2,0)、(3,0)、(0,4),
且四边形 ABCD是平行四边形,
∴ AB=CD=5,则点 C的坐标为(5,4),······························································ 1 分
;························································ 3 分
易求抛物线的解析式为
4
y
22
x
7
10
7
x
4
(2) 解法一:
连结 BD交对称轴于 G,在 Rt△OBD中,易求 BD=5,
∴CD=BD,则∠DCB=∠DBC,又∵∠DCB=∠CBE,∴∠DBC=∠CBE,······························ 4 分
过 G作 GN⊥BC于 H,交 x轴于 N,易证 GH=HN,···················································· 5 分
∴点 G与点 M重合,求出直线 BD的解析式 y= 4
x
3
根据抛物线可知对称轴方程为 5
x
2
即 GF= 2
FM FB
3
又∵MN被 BC垂直平分,∴BM=BN=5
6
∴点 N的坐标为( 23
6
解法二:设点 M( 5
2
,
,则点 M的坐标为( 5
2
,0);············································································· 7 分
,························································ 6 分
,b),点 N(a,0),
,BF= 1
2
, 2
3
,∴BM=
),
5
6
,
2
2
4
y
则 MN的中点坐标为( 5 2 ,
a b
2
求得直线 BC的解析 式为 2
x
延长 CB交对称轴于点 Q,可求点 Q的坐标为( 5
2
4
b
,代入得 2
,∴ 2
MQB
MNF
tan
tan
∴
6
a
1
2
b
a
5
2
),····································································· 4 分
a b …①······································ 5 分
7
,-1),又易得∠MQB=∠MNF,
…②······································· 6 分
5
由①、②得, 23
6
a , 2
3
b ,∴点 N的坐标为( 23
6
,0).···································· 7 分
(3)解法一:过点 M作直线交 x轴于点 1P ,易求四边形 AECD的面积为 28,四边形 ABCD
的面积为 20,由“四边形 AECD的面积分为 3:4”可知直线 1PM 必与线段 CD相交,设交点
为 1Q ,················································································································ 8 分
四边形 1
PF
点 P 在对称轴的左侧,则 1
1
1
a
PECQ 的面积为 2S ,点 P1的坐标为(a,0),假设
APQ D 的面积为 1S ,四边形 1
5
PE
, 1
2
FM
MK
Q K
FP
1
1
10
,
,易求 1Q K =
,
,
PF
1
5
2
5(
7
5
a
a
)
由△
CQ
∴ 1
∴ 2S =
P
根据 1
a
1MFP ,得
5
2
(5
a
9(
4
1MKQ ∽△
55(
) 5
a
2
,则 a= 9
10 7
) 4
a
4
)求出直线 1PM 的解析式为 8
,M( 5 2,
x
3
2 3
8
x
3
,0)
1
2
12
y
22
3
若点 P在对称轴的右侧,则直线 2P M 的解析式为
解法二:过点 M作直线交 x轴于 1P ,易求四边形 AECD的面积为 28,四边形 ABCD的面
.······························· 12 分
y
积为 20,由“四边形 AECD的面积分为 3∶4”可知直线 1PM 必交在线段 CD上,················ 8 分
若 P在对称轴的左侧,
由△
1MKQ ∽△
1MFP 得,S△MKQ1∶S△MFP1
=25:1,······················································· 9 分
···························································10 分
,······························· 11 分
6
=14,∴S△MFP1
,则 1
FP ,
= 1
12
1
4
又∵S△MKQ1
P
∴ 1
9(
4
,0)
+12-S△MFP1
,根据 M( 5 2,
2 3
若点 P在对称轴的右侧,则直线 2P M 的解析式为
),求出直线 1PM 的解析式为 8
x
3
22
3
8
3
y
y
x
,··························11 分
6
.······························· 12 分