2016 年四川省广安市中考数学真题及答案
一、选择题(每小题只有一个选项符合题意,请将正确选项涂在答题卡上,每小题 3 分,共 30 分)
1.﹣3 的绝对值是(
)
A.
B.﹣3
C.3
D.±3
)
B. =±3 C.m2•m3=m6
2.下列运算正确的是(
A.(﹣2a3)2=﹣4a6
3.经统计我市去年共引进世界 500 强外资企业 19 家,累计引进外资 410000000 美元,数字 410000000 用
科学记数法表示为(
A.41×107
4.下列图形中既是轴对称图形又是中心对称图形的是(
B.4.1×108 C.4.1×109 D.0.41×109
D.x3+2x3=3x3
)
)
A.
等边三角形 B.
平行四边行 C.
正五边形
D.
圆
5.函数 y=
A.
中自变量 x 的取值范围在数轴上表示正确的是(
)
B.
C.
D.
6.若一个正 n 边形的每个内角为 144°,则这个正 n 边形的所有对角线的条数是(
A.7
7.初三体育素质测试,某小组 5 名同学成绩如下所示,有两个数据被遮盖,如图:
B.10
C.35
D.70
)
编号
得分
1
38
2
34
3
■
4
37
5
40
方差
■
平均成绩
37
)
C.35,3
B.36,4
D.36,3
那么被遮盖的两个数据依次是(
A.35,2
8.下列说法:
①三角形的三条高一定都在三角形内
②有一个角是直角的四边形是矩形
③有一组邻边相等的平行四边形是菱形
④两边及一角对应相等的两个三角形全等
⑤一组对边平行,另一组对边相等的四边形是平行四边形
其中正确的个数有(
A.1 个 B.2 个 C.3 个 D.4 个
9.如图,AB 是圆 O 的直径,弦 CD⊥AB,∠BCD=30°,CD=4 ,则 S 阴影=(
)
)
A.2π B. π C. π D. π
10.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,并且关于 x 的一元二次方程 ax2+bx+c﹣m=0 有两个
不相等的实数根,下列结论:
①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正确的个数有(
)
A.1
B.2
C.3
D.4[来源:Zxxk.Com]
二、填空题(请把最简答案填写在答题卡上相应位置,每小题 3 分,共 18 分)
11.将点 A(1,﹣3)沿 x 轴向左平移 3 个单位长度,再沿 y 轴向上平移 5 个单位长度后得到的点 A′的坐
标为
12.如图,直线 l1∥l2,若∠1=130°,∠2=60°,则∠3=
.
.
13.若反比例函数 y= (k≠0)的图象经过点(1,﹣3),则第一次函数 y=kx﹣k(k≠0)的图象经过
象限.
14.某市为治理污水,需要铺设一段全长 600m 的污水排放管道,铺设 120m 后,为加快施工进度,后来每
天比原计划增加 20m,结果共用 11 天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺
设 xm 管道,那么根据题意,可列方程
15.如图, 三个正方形的边长分别为 2,6,8;则图中阴影部分的面积为
.
.
16.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了(a+b)
n(n=1,2,3,4…)的展开式的系数规律(按 a 的次数由大到小的顺序):
请依据上述规律,写出(x﹣ )2016 展开式中含 x2014 项的系数是
.
三、解答 题(本大题共 4 小题,第 17 小题 5 分,第 18、19、20 小题各 6 分,共 3 分)
17.计算:( )﹣1﹣ +tan60°+|3﹣2
|.
18.先化简,再求值:(
﹣
)÷
,其中 x 满足 2x+4=0.
19.如图,四边形 ABCD 是菱形,CE⊥AB 交 AB 的延长线于点 E,CF⊥AD 交 AD 的延长线于点 F,求证:DF=BE.
20.如图,一次函数 y1=kx+b(k≠0)和反比例函数 y2= (m≠0)的图象交于点 A(﹣1,6),B(a,﹣2).
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接写出 y1>y2 时,x 的取值范围.
四、实践应 用(本大题共 4 个小题,第 21 小题 6 分,第 22、23、24 小题各 8 分,共 30 分)
21.某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据
后,老师将减压方式分为五类,并绘制了图 1、图 2 两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动 C”所对应的圆心角度数;
(3)若喜欢“交流谈心”的 5 名同学中有三名男生和两名女生;老师想从 5 名同学中任选两名同学进行交
流,直接写出选取的两名同学都是女生的概率.
22.某水果积极计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表
为装运甲、乙、丙三种水果的重量及利润.
甲
每辆汽车能装的数量(吨) 4
每吨水果可获利润(千元) 5
乙
2
7
丙
3
4
(1)用 8 辆汽车装运乙、丙两种水果共 22 吨到 A 地销售,问装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用 20 辆汽车装运甲、乙、丙三种水果共 72 吨到 B 地销售(每种水果不少于一车),假
设装运甲水果的汽车为 m 辆,则装运乙、丙两种水果的汽车各多少辆?(结果用 m 表示)
(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?
23.如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高 1.5 米,为了安全现要作一
个不锈钢扶手 AB 及两根与 FG 垂直且长为 1 米的不锈钢架杆 AD 和 BC(杆子的地段分别为 D、C),且
∠DAB=66.5°.(参考数据:cos66.5°≈0.40,sin66.5°≈0.92)
(1)求点 D 与点 C 的高度 DH;
(2)求所有不锈钢材料的总长度(即 AD+AB+BC 的长,结果精确到 0.1 米)
24.在数学活动课上,老师要求学生在 5×5 的正方形 ABCD 网格中(小正方形的边长为 1)画直角三角形,
要求三个顶点都在格点上,而且三边与 AB 或 AD 都不平行.画四种图形,并直接写出其周长(所画图象相
似的只算一种).
五、推理与论证
25.如图,以△ABC 的 BC 边上一点 O 为圆心,经过 A,C 两点且与 BC 边交于点 E,点 D 为 CE 的下半圆弧的
中点,连接 AD 交线段 EO 于点 F,若 AB=BF.
(1)求证:AB 是⊙O 的切线;
(2)若 CF=4,DF= ,求⊙O 的半径 r 及 sinB.
六、拓展探究
26.如图,抛物线 y=x2+bx+c 与直线 y= x﹣3 交于 A、B 两点,其中点 A 在 y 轴上,点 B 坐标为(﹣4,﹣5),
点 P 为 y 轴左侧的抛物线上一动点,过点 P 作 PC⊥x 轴于点 C,交 AB 于点 D.
(1)求抛物线的解析式;
(2)以 O,A,P,D 为顶点的平行四边形是否存在?如存在,求点 P 的坐标;若不存在,说明理由.
(3)当点 P 运动到直线 AB 下方某一处时,过点 P 作 PM⊥AB,垂足为 M,连接 PA 使△PAM 为等腰直角三角
形,请直接写出此时点 P 的坐标.
2016 年四川省广安市中考数学试卷
参考答案与试题解析
一、选择题(每小题只有一个选项符合题意,请将正确选项涂在答题卡上,每小题 3 分,共 30 分)
1.﹣3 的绝对值是(
)
A.
B.﹣3
C.3
D.±3
【考点】绝对值.
【分析】根据一个负数的绝对值是它的相反数即可求解.
【解答】解:﹣3 的绝对值是 3.
故选:C.
)
D.x3+2x3=3x3
B. =±3 C.m2•m3=m6
2.下列运算正确的是(
A.(﹣2a3)2=﹣4a6
【考点】幂的乘方与积的乘方;算术平方根;合并同类项;同底数幂的乘法.
【分析】根据积的乘方,等于把积的每一个因式分别乘方再把所得的幂相乘;算术平方根的定义,同底数
幂相乘,底数不变指数相加;以及合并同类项法则对各选项分析判断即可得解.
【解答】解:A、(﹣2a3)2=(﹣2)2•(a3)2=4a6,故本选项错误;
B、 =3,故本选项错误;
C、m2•m3=m2+3=m5,故本选项错误;
D、x3+2x3=3x3,故本选项正确.
故选 D.
)
B.4.1×108 C.4.1×109 D.0.41× 109
3.经统计我市去年共引进世界 500 强外资企业 19 家,累计引进外资 410000000 美元,数字 410000000 用科
学记数法表示为(
A.41×10 7
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原
数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;
当原数的绝对值<1 时,n 是负数.
【解答】解:将 410000000 用科学记数法表示为:4.1×108.
故选:C.
4.下列图形中既是轴对称图形又是中心对称图形的是(
)
A.
等边三角形 B.
平行四边行 C.
正五边形
D.
圆
【考点】中心对称图形;轴对称图形.
【分析】根据中心对称图形与轴对称图形的概念进行判断即可.
【解答】解:等边三角形是轴对称图形不是中心对称图形;
平行四边形不是轴对称图形是中心对称图形;
正五边形是轴对称图形不是中心对称图形;
圆是轴对称图形又是中心对称图形,
故选:D.
5.函数 y=
中自变量 x 的取值范围在数轴上表示正确的是(
)
A.
B.
C.
D.
【考点】在数轴上表示不等式的解集;函数自变量的取值范围.
【分析】根据负数没有平方根求出 x 的范围,表示在数轴上即可.
【解答】解:由函数 y=
解得:x≥﹣2,
表示在数轴上,如图所示:
,得到 3x+6≥0,
故选 A
B.10
6.若一个正 n 边形的每个内角为 144°,则这个正 n 边形的所有对角线的条数是(
A.7
【考点】多边形内角与外角;多边形的对角线.
【分析】由正 n 边形的每个内角为 144°结合多边形内角和公式,即可得出关于 n 的一元一次方程,解方程
C.35
D.70
)
即可求出 n 的值,将其代入
中即可得出结论.
【解答】解:∵一个正 n 边形的每个内角为 144°,
∴144n=180×(n﹣2),解得:n=10.
这个正 n 边形的所有对角线的条数是:
=
=35.
故选 C.
7.初三体育素质测试,某小组 5 名同学成绩如下所示,有两个数据被遮盖,如图:
编号
得分
1
38
2
34
3
■
4
37
5
40
方差
■
平均成绩
37
)
C.35,3
B.36,4
那么被遮盖的两个数据依次是(
A.35,2
【考点】方差.
【分析】根据平均数的计算公式先求出编号 3 的得分,再根据方差公式进行计算即可得出答案.
【解答】解:∵这组数据的平均数是 37,
∴编号 3 的得分是:37×5﹣(38+34+37+40)=36;
D.36,3
被遮盖的方差是: [(38﹣37)2+(34﹣37)2+(36﹣37)2+(37﹣37)2+(40﹣37)2]=4;
故选 B.
)
8.下列说法:
①三角形的三条高一定都在三角形内
②有一个角是直角的四边形是矩形
③有一组邻边相等的平行四边形是菱形
④两边及一角对应相等的两个三角形全等
⑤一组对边平行,另一组对边相等的四边形是平行四边形
其中正确的个数有(
A.1 个 B.2 个 C.3 个 D.4 个
【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱
形的判定.
【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形
的判定方法即可解决问题.
【解答】解:①错误,理由:钝角三角形有两条高在三角形外.
②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.
③正确,有一组邻边相等的平行四边形是菱形.
④错误,理由两边及一角对应相等的两个三角形不一定全等.
⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.
正确的只有③,
故选 A.
9.如图,AB 是圆 O 的直径,弦 CD⊥AB,∠B CD=30°,CD=4 ,则 S 阴影=(
)
A.2π B. π C. π D. π
【考点】圆周角定理;垂径定理;扇形面积的计算.
【分析】根据垂径定理求得 CE=ED=2 ,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线
段 OD、OE 的长度,最后将相关线段的长度代入 S 阴影=S 扇形 ODB﹣S△DOE+S△BEC.
【解答】解:如图,假设线段 CD、AB 交于点 E,
∵AB 是⊙O 的直径,弦 CD⊥AB,
∴CE=ED=2 ,
又∵∠BCD=30°,
∴∠DOE=2∠BCD=60°,∠ODE=30°,
∴OE=DE•cot60°=2 × =2,OD=2OE=4,