logo资料库

2019年广西河池市中考数学真题及答案.doc

第1页 / 共17页
第2页 / 共17页
第3页 / 共17页
第4页 / 共17页
第5页 / 共17页
第6页 / 共17页
第7页 / 共17页
第8页 / 共17页
资料共17页,剩余部分请下载后查看
2019 年广西河池市中考数学真题及答案 一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.每小题给出的四个选项中,只有一项符合题目要 求.请用 2B 铅笔将答题卡上对应题目的答案标号涂黑.) 1.计算 3﹣4,结果是( ) B.﹣7 A.﹣1 C.1 D.7 2.如图,∠1=120°,要使 a∥b,则∠2 的大小是( ) A.60° B.80° C.100° D.120° 第 2 题 第 4 题 第 7 题 第 9 题 3.下列式子中,为最简二次根式的是( ) A. B. C. D. 4.某几何体的三视图如图所示,该几何体是( ) A.圆锥 B.圆柱 C.三棱锥 D.球 5.不等式组 的解集是( ) A.x≥2 B.x<1 C.1≤x<2 D.1<x≤2 6.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56, 这组数据的众数、中位数分别是( A.53,53 B.53,56 ) C.56,53 D.56,56 7.如图,在△ABC中,D,E分别是 AB,BC的中点,点 F在 DE延长线上,添加一个条件使四边形 ADFC为 平行四边形,则这个条件是( ) A.∠B=∠F 8.函数 y=x﹣2 的图象不经过( B.∠B=∠BCF ) C.AC=CF D.AD=CF A.第一象限 B.第二象限 C.第三象限 D.第四象限 9.如图,在正方形 ABCD中,点 E,F分别在 BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是( ) A.1 B.2 C.3 10.如图,在正六边形 ABCDEF中,AC=2 ,则它的边长是( ) A.1 B. C. D.4 D.2 第 10 题 第 11 题 第 12 题 11.如图,抛物线 y=ax2+bx+c的对称轴为直线 x=1,则下列结论中,错误的是( D.a﹣b+c=0 B.b2﹣4ac>0 C.2a﹣b=0 A.ac<0 ) 12.如图,△ABC为等边三角形,点 P从 A出发,沿 A→B→C→A作匀速运动,则线段 AP的长度 y与运动时 间 x之间的函数关系大致是( )
A. 二、填空题(本大题共 6 小题,每小题 3 分,共 18 分.请把答案写在答题卡上对应的答题区域内.) C. B. D. 13.分式方程 的解为 . 14.如图,以点 O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则 = . 15.掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是 . 16.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P= 17.如图,在平面直角坐标系中,A(2,0),B(0,1),AC由 AB绕点 A顺时针旋转 90°而得,则 AC所在 °. 直线的解析式是 . 18.a1,a2,a3,a4,a5,a6,…,是一列数,已知第 1 个数 a1=4,第 5 个数 a5=5,且任意三个相邻的数之 和为 15,则第 2019 个数 a2019 的值是 . 三、解答题(本大题共 8 小题,共 66 分.解答应写出文字说明、证明过程或运算步骤.请将解答写在答题 卡上对应的答题区域内.) 19.(6 分)计算:30+ ﹣( )﹣2+|﹣3|.20.(6 分)分解因式:(x﹣1)2+2(x﹣5). 21.(8 分)如图,AB为⊙O的直径,点 C在⊙O上. (1)尺规作图:作∠BAC的平分线,与⊙O交于点 D;连接 OD,交 BC于点 E(不写作法,只保留作图痕 迹,且用黑色墨水笔将作图痕迹加黑); (2)探究 OE与 AC的位置及数量关系,并证明你的结论. 22.(8 分)如图,在河对岸有一棵大树 A,在河岸 B点测得 A在北偏东 60°方向上,向东前进 120m到达 C 点,测得 A在北偏东 30°方向上,求河的宽度(精确到 0.1m).参考数据: ≈1.414, ≈1.732. 23.(8 分)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生, 要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:
兴趣班 人数 百分比 美术 书法 体育 音乐 10 30 b 20 10% a 40% c 根据统计图表的信息,解答下列问题: (1)直接写出本次调查的样本容量和表中 a,b,c的值; (2)将折线图补充完整; (3)该校现有 2000 名学生,估计该校参加音乐兴趣班的学生有多少人? 24.(8 分)在某体育用品商店,购买 30 根跳绳和 60 个毽子共用 720 元,购买 10 根跳绳和 50 个毽子共用 360 元. (1)跳绳、毽子的单价各是多少元? (2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买 100 根 跳绳和 100 个毽子只需 1800 元,该店的商品按原价的几折销售? 25.(10 分)如图,五边形 ABCDE内接于⊙O,CF与⊙O相切于点 C,交 AB延长线于 F. (1)若 AE=DC,∠E=∠BCD,求证:DE=BC; (2)若 OB=2,AB=BD=DA,∠F=45°,求 CF的长. 26.(12 分)在平面直角坐标系中,矩形 ABCD的顶点坐标为 A(0,0),B(6,0),C(6,8),D(0,8), AC,BD交于点 E.
(1)如图(1),双曲线 y= 过点 E,直接写出点 E的坐标和双曲线的解析式; (2)如图(2),双曲线 y= 与 BC,CD分别交于点 M,N,点 C关于 MN的对称点 C′在 y轴上.求证△CMN~ △CBD,并求点 C′的坐标; (3)如图(3),将矩形 ABCD向右平移 m(m>0)个单位长度,使过点 E的双曲线 y= 与 AD交于点 P.当 △AEP为等腰三角形时,求 m的值.
2019 年广西河池市中考数学试卷 参考答案与试题解析 一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.每小题给出的四个选项中,只有一项符合题目要 求.请用 2B 铅笔将答题卡上对应题目的答案标号涂黑.) 1.计算 3﹣4,结果是( ) B.﹣7 C.1 A.﹣1 【分析】有理数减法法则:减去一个数,等于加上这个数的相反数.依此即可求解. 【解答】解:3﹣4=﹣1. 故选:A. 【点评】考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转 化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反 数). D.7 2.如图,∠1=120°,要使 a∥b,则∠2 的大小是( ) B.80° C.100° A.60° 【分析】根据同位角相等,两直线平行即可求解. 【解答】解:如果∠2=∠1=120°, 那么 a∥b. 所以要使 a∥b,则∠2 的大小是 120°. 故选:D. 【点评】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键. D.120° 3.下列式子中,为最简二次根式的是( ) A. B. C. D. 【分析】利用最简二次根式定义判断即可. 【解答】解:A、原式= ,不符合题意; B、是最简二次根式,符合题意; C、原式=2,不符合题意; D、原式=2 ,不符合题意; 故选:B. 【点评】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键. 4.某几何体的三视图如图所示,该几何体是( ) A.圆锥 B.圆柱 C.三棱锥 D.球
【分析】由已知三视图得到几何体是圆锥. 【解答】解:由已知三视图得到几何体是以圆锥; 故选:A. 【点评】本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键. 5.不等式组 的解集是( ) A.x≥2 【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. C.1≤x<2 D.1<x≤2 B.x<1 【解答】解: , 解①得:x≤2, 解②得:x>1. 则不等式组的解集是:1<x≤2. 故选:D. 【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小 找不到”的原则是解答此题的关键. 6.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56, ) D.56,56 B.53,56 C.56,53 这组数据的众数、中位数分别是( A.53,53 【分析】根据众数和中位数的定义求解可得. 【解答】解:将数据重新排列为 51,53,53,56,56,56,58, 所以这组数据的中位数为 56,众数为 56, 故选:D. 【点评】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数 据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排 列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数, 则中间两个数据的平均数就是这组数据的中位数. 7.如图,在△ABC中,D,E分别是 AB,BC的中点,点 F在 DE延长线上,添加一个条件使四边形 ADFC为 平行四边形,则这个条件是( ) A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF 【分析】利用三角形中位线定理得到 DE AC,结合平行四边形的判定定理进行选择. 【解答】解:∵在△ABC中,D,E分别是 AB,BC的中点, ∴DE是△ABC的中位线, ∴DE AC. A、根据∠B=∠F不能判定 AC∥DF,即不能判定四边形 ADFC为平行四边形,故本选项错误. B、根据∠B=∠BCF可以判定 CF∥AB,即 CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到 四边形 ADFC为平行四边形,故本选项正确. C、根据 AC=CF不能判定 AC∥DF,即不能判定四边形 ADFC为平行四边形,故本选项错误. D、根据 AD=CF,FD∥AC不能判定四边形 ADFC为平行四边形,故本选项错误. 故选:B. 【点评】本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于 第三边,且等于第三边的一半. 8.函数 y=x﹣2 的图象不经过( )
D.第四象限 C.第三象限 B.第二象限 A.第一象限 【分析】根据 k>0 确定一次函数经过第一三象限,根据 b<0 确定与 y轴负半轴相交,从而判断得解. 【解答】解:一次函数 y=x﹣2, ∵k=1>0, ∴函数图象经过第一三象限, ∵b=﹣2<0, ∴函数图象与 y轴负半轴相交, ∴函数图象经过第一三四象限,不经过第二象限. 故选:B. 【点评】本题考查了一次函数的性质,对于一次函数 y=kx+b,k>0,函数经过第一、三象限,k<0, 函数经过第二、四象限. 9.如图,在正方形 ABCD中,点 E,F分别在 BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是( ) B.2 A.1 【分析】根据正方形的性质,利用 SAS即可证明△ABE≌△BCF,再根据全等三角形的性质可得∠BFC=∠ AEB,进一步得到∠BFC=∠ABF,从而求解. 【解答】证明:∵四边形 ABCD是正方形, ∴AB∥BC,AB=BC,∠ABE=∠BCF=90°, 在△ABE和△BCF中, C.3 D.4 , ∴△ABE≌△BCF(SAS), ∴∠BFC=∠AEB, ∴∠BFC=∠ABF, 故图中与∠AEB相等的角的个数是 2. 故选:B. 【点评】本题考查正方形的性质、全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中 考常考题型. 10.如图,在正六边形 ABCDEF中,AC=2 ,则它的边长是( ) A.1 【分析】过点 B作 BG⊥AC于点 G.,正六边形 ABCDEF中,每个内角为(6﹣2)×180°÷6=120°,即 D.2 B. C. ∠ABC=120°,∠BAC=∠BCA=30°,于是 AG= AC= ,AB=2, 【解答】解:如图,过点 B作 BG⊥AC于点 G.
正六边形 ABCDEF中,每个内角为(6﹣2)×180°÷6=120°, ∴∠ABC=120°,∠BAC=∠BCA=30°, ∴AG= AC= , ∴GB=1,AB=2, 即边长为 2. 故选:D. 【点评】本题考查了正多边形,熟练运用正多边形的内角和公式是解题的关键. 11.如图,抛物线 y=ax2+bx+c的对称轴为直线 x=1,则下列结论中,错误的是( ) B.b2﹣4ac>0 C.2a﹣b=0 A.ac<0 【分析】由抛物线的开口方向判断 a与 0 的关系,由抛物线与 y轴的交点判断 c与 0 的关系,然后根据 对称轴及抛物线与 x轴交点情况进行推理,进而对所得结论进行判断. 【解答】解:A、由抛物线的开口向下知 a<0,与 y轴的交点在 y轴的正半轴上,可得 c>0,因此 ac< 0,故本选项正确,不符合题意; B、由抛物线与 x轴有两个交点,可得 b2﹣4ac>0,故本选项正确,不符合题意; D.a﹣b+c=0 C、由对称轴为 x=﹣ =1,得 2a=﹣b,即 2a+b=0,故本选项错误,符合题意; D、由对称轴为 x=1 及抛物线过(3,0),可得抛物线与 x轴的另外一个交点是(﹣1,0),所以 a﹣b+c =0,故本选项正确,不符合题意. 故选:C. 【点评】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求 2a与 b的关系,以及二次函数 与方程之间的转换,根的判别式的熟练运用. 12.如图,△ABC为等边三角形,点 P从 A出发,沿 A→B→C→A作匀速运动,则线段 AP的长度 y与运动时 间 x之间的函数关系大致是( ) A. B.
分享到:
收藏