BP Statistical Review
of World Energy
2019 | 68th edition
Contents
Renewable energy
51 Renewables consumption
52 Generation by source
53 Biofuels production
For 66 years, the BP Statistical Review of World
Energy has provided high-quality objective and
globally consistent data on world energy markets.
The review is one of the most widely respected
and authoritative publications in the field of energy
Electricity
economics, used for reference by the media,
54 Generation
academia, world governments and energy
56 Generation by fuel
companies. A new edition is published every June.
CO2 Carbon
57 Carbon dioxide emissions
Natural gas
30 Reserves
32 Production
34 Consumption
37 Prices
38 Trade movements
Coal
42 Reserves
44 Production
45 Consumption
47 Prices and trade movements
Discover more online
Introduction
1 Group chief executive’s introduction
2 2018 at a glance
3 Group chief economist’s analysis
Primary energy
8 Consumption
9 Consumption by fuel
12 Consumption per capita
Oil
14 Reserves
16 Production
20 Consumption
24 Prices
26 Refining
28 Trade movements
All the tables and charts found in the latest printed
edition are available at bp.com/statisticalreview
plus a number of extras, including:
•
Nuclear energy
Hydroelectricity
48 Consumption
The energy charting tool – view
predetermined reports or chart specific data
according to energy type, region, country
and year.
Historical data from 1965 for many sections.
49 Consumption
Additional data for refined oil production
demand, natural gas, coal, hydroelectricity,
nuclear energy and renewables.
PDF versions and PowerPoint slide packs of
the charts, maps and graphs, plus an Excel
workbook of the data.
Regional and country factsheets.
Videos and speeches.
•
•
•
•
•
Key minerals
58 Production
59 Reserves
59 Prices
Appendices
60 Approximate conversion factors
60 Definitions
61 More information
Discover more online
All the tables and charts found in the printed edition are available
at bp.com/statisticalreview plus a number of extras, including:
Energy Outlook
Watch the BP Energy Outlook 2017 video,
containing our projections of long-term energy
trends to 2035. Download the booklet and
presentation materials at bp.com/energyoutlook
The energy charting tool – view predetermined reports or chart
specific data according to energy type, region, country and year.
Join the conversation
#BPstats
Download the BP World Energy app
Explore the world of energy from your tablet or smartphone.
Customize charts and perform the calculations. Review
the data online and offline. Download the app for free from
the Apple App Store and Google play store.
Historical data from 1965 for many sections. Additional
Download the BP World Energy app
country and regional coverage for all consumption tables.
Additional data for refined oil production demand, natural gas, coal,
Explore the world of energy from your tablet or
smartphone. Customize charts and perform the
calculations. Review the data online and offline.
Download the app for free from the Apple
PDF versions and PowerPoint slide packs of the charts, maps
App Store and Google play store.
hydroelectricity, nuclear energy and renewables.
and graphs, plus an Excel workbook and database format of the data.
Regional and country factsheets.
Videos and speeches.
Disclaimer
The data series for proved oil and gas reserves in BP Statistical Review of World Energy June 2017 does not necessarily
meet the definitions, guidelines and practices used for determining proved reserves at company level, for instance, as
published by the US Securities and Exchange Commission, nor does it necessarily represent BP’s view of proved
reserves by country. Rather, the data series has been compiled using a combination of primary official sources and
third-party data.
Group chief executive’s introduction
The developments documented in this year’s Statistical Review highlight a
critical challenge facing the global power sector. Power demand increased
even more strongly than overall energy demand in 2018, as the world
continued to electrify. But this shift towards greater electrification can play
an important part in the energy transition only if it is accompanied by a
decarbonization of the power sector.
Despite the continuing rapid growth in renewable energy last year, it
provided only a third of the required increase in power generation, with coal
providing a broadly similar contribution. Indeed, the increasing use of coal
within the power sector is estimated to have more than accounted for the
entire growth of global coal consumption last year.
Overall, the electric power sector is estimated to have absorbed around half
of the growth in primary energy in 2018 and accounted for around half of the
increase in carbon emissions.
Decarbonizing the power sector while also meeting the rapidly expanding
demand for power, particularly in the developing world, is perhaps the single
most important challenge facing the global energy system over the next
20 years. Renewable energy has a vital role to play in meeting that challenge.
But it is unlikely to be able to do so on its own. A variety of different
technologies and fuels are likely to be required, including extensive coal-to-
gas switching and the widespread deployment of carbon capture, use and
storage (CCUS). As I have said before, this is not a race to renewables, it is
a race to reduce carbon emissions across many fronts.
Our industry, and society more generally, face significant challenges as
we navigate the transition to a low carbon energy system. That will require
understanding and judgement, both of which rely on the kind of objective
data and analysis found in the Statistical Review. We are proud of the role
that the BP Statistical Review has played in informing public debate over
the past 68 years and I hope that you find it a useful resource for your
own discussions and deliberations.
Let me conclude by thanking BP’s economics team and all those who
have helped us prepare this Review – particularly those governments and
statistical agencies around the world who have contributed their official data
again this year. Thank you for your continuing co-operation and transparency.
Bob Dudley
Group chief executive
June 2019
1
Welcome to the BP Statistical Review of
World Energy, which records the events of
2018: a year in which there was a growing
divide between societal demands for an
accelerated transition to a low carbon energy
system and the actual pace of progress.
In particular, the data compiled in this year’s Review suggest that in 2018,
global energy demand and carbon emissions from energy use grew at their
fastest rate since 2010/11, moving even further away from the accelerated
transition envisaged by the Paris climate goals.
BP’s economics team estimate that much of the rise in energy growth
last year can be traced back to weather-related effects, as families and
businesses increased their demand for cooling and heating in response to
an unusually large number of hot and cold days. The acceleration in carbon
emissions was the direct result of this increased energy consumption.
Even if these weather effects are short-lived, such that the growth in energy
demand and carbon emissions slow over the next few years, there seems
little doubt that the current pace of progress is inconsistent with the Paris
climate goals. The world is on an unsustainable path: the longer carbon
emissions continue to rise, the harder and more costly will be the eventual
adjustment to net-zero carbon emissions. Yet another year of growing
carbon emissions underscores the urgency for the world to change.
The Statistical Review provides a timely and objective insight into those
developments and how that change can begin to be achieved.
The strength in energy consumption was reflected across all the fuels,
many of which grew more strongly than their recent historical averages.
This acceleration was particularly pronounced for natural gas, which grew
at one of its fastest rates for over 30 years, accounting for over 40% of the
growth in primary energy. On the supply side, the data for 2018 reinforced
the central importance of the US shale revolution. Remarkably, the US
recorded the largest ever annual increases by any country in both oil and
natural gas production last year, with the vast majority of both increases
coming from onshore shale plays. At the same time, renewable energy,
led by wind and solar power, continued to grow far more rapidly than any
other form of energy.
BP Statistical Review of World Energy 2019
2018 at a glance
Global primary energy consumption grew
rapidly in 2018, led by natural gas and
renewables. Nevertheless, carbon emissions
rose at their highest rate for seven years.
Energy developments
Primary energy consumption grew at a rate of 2.9% last year,
almost double its 10-year average of 1.5% per year, and the fastest
since 2010.
By fuel, energy consumption growth was driven by natural gas,
which contributed more than 40% of the increase. All fuels grew
faster than their 10-year averages, apart from renewables, although
renewables still accounted for the second largest increment to
energy growth.
China, the US and India together accounted for more than two
thirds of the global increase in energy demand, with US
consumption expanding at its fastest rate for 30 years.
Carbon emissions
Carbon emissions grew by 2.0%, the fastest growth for seven years.
Oil
The annual average oil price (Dated Brent) rose to $71.31 per barrel,
up from $54.19/barrel in 2017.
Oil consumption grew by an above-average 1.4 million barrels per
day (b/d), or 1.5%. China (680,000 b/d) and the US (500,000 b/d)
were the largest contributors to growth.
Global oil production rose by 2.2 million b/d. Almost all of the net
increase was accounted for by the US, with their growth in
production (2.2 million b/d) a record for any country in any year.
Elsewhere, production growth in Canada (410,000 b/d) and Saudi
Arabia (390,000 b/d) was outweighed by declines in Venezuela
(-580,000 b/d) and Iran (-310,000 b/d).
Refinery throughput rose by 960,000 b/d, down from 1.5 million
b/d in 2017. Nevertheless, average refinery utilization climbed to its
highest level since 2007.
Natural gas
Natural gas consumption rose by 195 billion cubic metres (bcm), or
5.3%, one of the fastest rates of growth since 1984.
Growth in gas consumption was driven mainly by the US (78 bcm),
supported by China (43 bcm), Russia (23 bcm) and Iran (16 bcm).
Above: Singapore central business district.
2
+2.9%
Growth of global primary energy
consumption, the fastest growth since 2010.
Global natural gas production increased by 190 bcm, or 5.2%.
Almost half of this came from the US (86 bcm), which (as with oil
production) recorded the largest annual growth seen by any country
in history. Russia (34 bcm), Iran (19 bcm) and Australia (17 bcm)
were the next largest contributions to growth.
Growth in inter-regional natural gas trade was 39 bcm or 4.3%,
more than double the 10-year average, driven largely by continuing
rapid expansion in liquefied natural gas (LNG).
LNG supply growth came mainly from Australia (15 bcm), the US
(11 bcm) and Russia (9 bcm). China accounted for around half of the
increase in imports (21 bcm).
Coal
Coal consumption grew by 1.4%, double its 10-year average growth.
Consumption growth was led by India (36 mtoe) and China
(16 mtoe). OECD demand fell to its lowest level since 1975.
Coal’s share in primary energy fell to 27.2%, its lowest in
fifteen years.
Global coal production rose by 162 mtoe, or 4.3%. China (82 mtoe)
and Indonesia (51 mtoe) provided the largest increments.
Renewables, hydro and nuclear
Renewable power grew by 14.5%, slightly below its historical
average, although its increase in energy terms (71 mtoe) was close
to the record-breaking increase of 2017.
Solar generation grew by 30 mtoe, just below the increase in wind
(32 mtoe), and provided more than 40% of renewables growth.
By country, China was again the largest contributor to renewables
growth (32 mtoe), surpassing growth in the entire OECD (26 mtoe).
Hydroelectric generation increased by an above-average 3.1%, with
European generation rebounding by 9.8% (12.9 mtoe), almost
offsetting its steep decline in the previous year.
Nuclear generation rose by 2.4%, its fastest growth since 2010.
China (10 mtoe) contributed almost three quarters of global growth,
with Japan (5 mtoe) the second largest increase.
Electricity
Electricity generation rose by an above-average 3.7%, buoyed by
China (which accounted for more than half of the growth), India
and the US.
Renewables accounted for a third of the net increase in power
generation, followed closely by coal (31%) and then natural
gas (25%).
The share of renewables in power generation increased from
8.4% to 9.3%. Coal still accounted for the largest share of power
generation at 38%.
Key minerals
Cobalt and Lithium production rose by 13.9% and 17.6%
respectively, both well in excess of their 10-year average
growth rates.
Cobalt prices rose 30% to their highest levels since 2008, while
Lithium carbonate prices increased by 21% to new highs.
BP Statistical Review of World Energy 2019
Group chief economist’s analysis
Primary energy
Contribution to primary energy growth in 2018
40%
30%
20%
10%
0%
34%
20%
15%
10%
China
US
India
Other
Developing
Asia
Cumulative contribution (RHS)
100%
75%
50%
25%
0%
7%
5%
Russia Middle
East
3%
Africa
5%
Rest of
World
Contributions shown do not sum to 100% due to rounding
Energy in 2018: an unsustainable path
The Statistical Review of World Energy has been providing timely and
objective energy data for the past 68 years. In addition to the raw data, the
Statistical Review also provides a record of key energy developments and
events through time.
energy consumption. Coal demand (1.4%) also increased for the second
consecutive year, following three years of declines. Growth in renewable
energy (14.5%) eased back slightly relative to past trends although remained
by far the world’s fastest growing energy source.
My guess is that when our successors look back at Statistical Reviews
from around this period, they will observe a world in which there was
growing societal awareness and demands for urgent action on climate
change, but where the actual energy data continued to move stubbornly
in the wrong direction.
A growing mismatch between hopes and reality. In that context, I fear
– or perhaps hope – that 2018 will represent the year in which this
mismatch peaked.
Key features of 2018
The headline numbers are the rapid growth in energy demand and carbon
emissions. Global primary energy grew by 2.9% in 2018 – the fastest growth
seen since 2010. This occurred despite a backdrop of modest GDP growth
and strengthening energy prices.
At the same time, carbon emissions from energy use grew by 2.0%,
again the fastest expansion for many years, with emissions increasing by
around 0.6 gigatonnes. That’s roughly equivalent to the carbon emissions
associated with increasing the number of passenger cars on the planet
by a third.
What drove these increases in 2018? And how worried should we be?
Starting first with energy consumption. As I said, energy demand grew
by 2.9% last year. This growth was largely driven by China, US and India
which together accounted for around two thirds of the growth. Relative to
recent historical averages, the most striking growth was in the US, where
energy consumption increased by a whopping 3.5%, the fastest growth
seen for 30 years and in sharp contrast to the trend decline seen over the
previous 10 years.
The strength in energy consumption was pretty much reflected across
all the fuels, most of which grew more strongly than their historical
averages. This acceleration was particularly pronounced in natural gas
demand, which increased 5.3%, one of its strongest growth rates for
over 30 years, accounting for almost 45% of the entire growth in global
2.0%
Growth of carbon emissions from
energy use, the fastest for seven years.
In terms of why the growth in energy demand was so strong: a simple model
provides a way of gauging the extent of the surprise in this year’s energy
data. The model uses GDP growth and oil prices (as a proxy for energy prices)
to predict primary energy growth at a country level and then aggregates to
global energy. Although very simple, the framework is able to explain much
of the broad contours in energy demand over the past 20 years or so.
This framework predicts that the growth in energy demand should have
slowed a little last year, reflecting the slightly weaker economic backdrop
and the strengthening in energy prices. Instead, energy demand picked up
quite markedly.
Digging into the data further, it seems that much of the surprising strength in
energy consumption in 2018 may be related to weather effects. In particular,
there was an unusually large number of hot and cold days across many of
the world’s major demand centres last year, particularly in the US, China
and Russia, with the increased demand for cooling and heating services
helping to explain the strong growth in energy consumption in each of
these countries.
In the US, unusually, there was an increase in both heating and cooling
days (as defined by the National Oceanic and Atmospheric Administration);
in past years, high numbers of heating days have tended to coincide with
low numbers of cooling days or vice versa. As a result, the increase in the
combined number of US heating and cooling days last year was its highest
since the 1950s, boosting US energy demand.
Global energy consumption growth
Annual change, %
6
4
2
0
-2
2000
2003
2006
2009
2012
2015
2018
Primary energy consumption
Predicted energy (with weather effects)*
Predicted energy (without weather effects)*
*These econometric models do not include Chinese energy intensive industries
3
BP Statistical Review of World Energy 2019
Energy demand and carbon emissions
Global energy consumption growth
Energy demand and
carbon emissions
Annual change, %
3%
Annual change, %
6%
4%
2%
0%
-2%
2%
1%
0%
-1%
2000 03
06
09
12
15
18
2012-2017
2018
Primary energy consumption
Predicted energy (with weather and
Chinese industry effects)
Primary energy
Carbon intensity
CO2 emissions
If we augment our framework to include a measure of heating and cooling
days for those countries for which data are available, this greatly reduces
the extent of the surprise in last year’s energy growth. Once these weather
effects are included, the growth in energy demand in 2018 still looks a
little stronger than expected, but more striking is the surprising weakness
of demand growth in the period 2014-16, which is far lower than the
framework predicts.
As discussed in previous Statistical Reviews, much of this weakness
appears to stem from the pattern of Chinese economic growth during this
period, in particular the pronounced weakness of some of China’s most
energy-intensive sectors – iron, steel and cement – which account for around
a quarter of China’s energy consumption and greatly dampened overall
energy growth. At the time, I speculated that some of the slowing in these
sectors reflected the structural rebalancing of the Chinese economy towards
more consumer and service-facing sectors and so was likely to persist. But
I also noted that the scale of the slowdown suggested that some of it was
likely to be cyclical and would reverse over time. And indeed, that is what
began to happen in iron and steel in 2017 and gathered pace last year.
If we adjust the framework to also take account of movements in these key
Chinese industrial sectors, the over-prediction of energy growth in 2014-16
is greatly reduced, as is the remaining ‘unexplained’ strength of energy
demand in 2018. So, in answer to the question of why energy demand was
so strong in 2018: it appears that the strength was largely due to weather-
related effects – especially in the US, China and Russia – together with
a further unwinding of cyclical factors in China.
How does this growth in energy demand relate to the worrying acceleration
in carbon emissions?
Above: Thunder Horse South Expansion project in the US Gulf of Mexico.
4
To a very large extent, the growth in carbon emissions is simply a direct
consequence of the increase in energy growth. Relative to the average of
the previous five years, growth in energy demand was 1.5 percentage points
higher in 2018 and the growth in carbon emissions was 1.4 percentage
points higher. One led to the other as the improvement in the carbon
intensity of the fuel mix was similar to its recent average.
Finally, in terms of the headline data, what signal might the 2018 data contain
for the future?
I think this depends in large part on how you interpret the increasing number
of heating and cooling days last year. If this was just random variation, we
might expect weather effects in the future to revert to more normal levels,
allowing the growth in energy demand and carbon emissions to fall back.
On the other hand, if there is a link between the growing levels of carbon in
the atmosphere and the types of weather patterns observed in 2018 this
would raise the possibility of a worrying vicious cycle: increasing levels of
carbon leading to more extreme weather patterns, which in turn trigger
stronger growth in energy (and carbon emissions) as households and
businesses seek to offset their effects.
There are many people better qualified than I to make judgements on this.
But even if these weather effects are short lived, such that the growth
in energy demand and carbon emissions slow over the next few years,
the recent trends still feel very distant from the types of transition paths
consistent with meeting the Paris climate goals.
Hopes and reality.
So, in that sense, there are grounds for us to be worried.
Oil
2018 was another rollercoaster year for oil markets, with prices starting
the year on a steady upward trend, reaching the dizzying heights of
$85/bbl in October, before plunging in the final quarter to end the year
at close to $50/bbl.
Oil demand provided a relatively stable backdrop, continuing to grow robustly,
increasing 1.4 Mb/d last year. In an absolute sense, the growth in demand
was dominated by the developing world, with China (0.7 Mb/d]) and India
(0.3 Mb/d) accounting for almost two thirds of the global increase. But relative
to the past 10 years or so, the big outlier was the US, where oil demand grew
by 0.5 Mb/d in 2018, its largest increase for well over 10 years, boosted by
increased demand for ethane as new production capacity came on stream.
The increased importance of petrochemicals in driving oil demand growth
was also evident in the global product breakdown, with products most
closely related to petrochemicals (ethane, LPG and naphtha) accounting
for around half of the overall growth in demand last year.
Against this backdrop of steady demand growth, all the excitement
came from the supply side, where global production grew by a whopping
2.2 Mb/d, more than double its historical average. The vast majority of this
growth was driven by US production, which grew by 2.2 Mb/d – the largest
ever annual increase by a single country. Since 2012 and the onset of the tight
oil revolution, US production (including NGLs) has increased by over 7 Mb/d
– broadly equivalent to Saudi Arabia’s crude oil exports – an astonishing
increase which has transformed both the structure of the US economy and
global oil market dynamics. Largely as a consequence, US net oil imports
shrunk to less than 3 Mb/d last year, compared with over 12 Mb/d in 2005.
2.2 Mb/d
Growth of US oil production, the largest
ever annual increase by a single country.
BP Statistical Review of World Energy 2019
Oil production
Global oil production
Annual change, Mb/d
3.0
Largest annual increases
in oil production
Mb/d
2.5
2.0
1.0
0.0
-1.0
2.0
1.5
1.0
0.5
0.0
2016
2017
2018
OPEC
Other World
Average
2005-15
US
US
2018
Saudi
Arabia
1991
US
2014
Saudi
Arabia
1973
Saudi
Arabia
1986
OPEC production fell by 0.3 Mb/d in 2018, with a marked increase in Saudi
Arabian production (0.4 Mb/d) offset by falls in Venezuela (-0.6 Mb/d) and
Iran (-0.3 Mb/d). But this year-on-year comparison doesn’t do justice to the
intra-year twists and turns in OPEC production.
The ride began in the first half of 2018 with the continuation of the OPEC+
agreement from December 2016. The OPEC+ group consistently overshot
their agreed production cuts during 2017 and this overshooting increased
further during the first half of 2018, largely reflecting continuing falls in
Venezuelan output. These production cuts helped push OECD inventories
below their five year moving average for the first time since the collapse in
oil prices in 2014.
The first major twist came in the middle of 2018: in response to falling
Venezuelan production and the US announcing in May its intention to
impose sanctions on all Iranian oil exports, the OPEC+ group in June
committed to achieving 100% compliance of their production cuts for
the group as a whole.
This commitment contained two important signals. First, given the extent to
which production was below the target level, it signalled the prospect of an
immediate increase in production. Second, it helped reduce the uncertainty
associated with the possibility of future disruptions to either Iranian
and Venezuelan production since the commitment to maintain “100%
compliance” in essence signalled the willingness of other members of the
OPEC+ group to offset any lost production.
As a result, between May and November of last year, net production by
the OPEC+ group increased by 900 Kb/d, despite Iranian and Venezuelan
production falling by a further 1 Mb/d. Job done. Or was it?
The problem with trying to stabilize oil markets is that there is always some
other pesky development that you hadn’t expected. Oil production by
Libya and Nigeria – neither of which were part of the OPEC+ agreement –
increased by more than 500 Kb/d between June and November of last year.
As a result, OECD inventories started to grow again. The growing sense of
excess supply was compounded by the US announcing in November that it
would grant temporary waivers for some imports of Iranian oil.
This triggered another twist: a new OPEC+ group was formed in December
of last year – this time excluding Iran and Venezuela, as well as Libya, but
78 bcm
Growth of US gas consumption,
a record high for any country.
including Nigeria – with a commitment to reduce production by 1.2 Mb/d
relative to October 2018 levels. After a slow start, by the spring of this year,
inventories have fallen back to around their five year average once again.
It’s tempting to interpret these twists and turns as indicative of OPEC’s
waning powers. But I’m not sure that’s the correct interpretation. The role
that OPEC+ played in more than offsetting the falls in Iranian and Venezuelan
output last year was very significant. For me, the twists and turns simply
reflect the difficulty of market management, especially in a world of record
supply growth in one part of the world and heightened geopolitical tensions
in others. It feels like the rollercoaster will run for some time to come.
Natural gas
2018 was a bonanza year for natural gas, with both global consumption and
production increasing by over 5%, one of the strongest growth rates in either
gas demand or output for over 30 years. The main actor here was the US,
accounting for almost 40% of global demand growth and over 45% of the
increase in production.
US gas production increased by 86 bcm, an increase of almost 12%, driven
by shale gas plays in Marcellus, Haynesville and Permian. Indeed, the US
achieved a unique double first last year, recording the single largest-ever
annual increases by any country in both oil and gas production – in case there
was any doubt: the US shale revolution is alive and kicking. The gains in
global gas production were supported by Russia (34 bcm), Iran (19 bcm) and
Australia (17 bcm).
Although some of the increase in US gas supplies was used to feed the
three new US LNG trains which came on stream last year, the majority
was used to quench the thirst of domestic demand. US gas consumption
increased by 78 bcm last year – roughly the same growth as the country
achieved over the previous six years. This exceptional strength appears to be
largely driven by the same weather-related effects, with rising demand for
space heating and cooling fuelling increased gas consumption, both directly,
and, more importantly, indirectly via growing power demand. The expansion
of gas consumption within the US power sector was further boosted by
almost 15 gigawatts of coal-fired generation capacity being retired last year.
Outside of the US, the growth in global gas demand was relatively
concentrated across three other countries: China (43 bcm), Russia (23 bcm)
and Iran (16 bcm), which together with the US, accounted for 80% of
global growth.
China gas consumption grew by an astonishing 18% last year. This strength
stemmed largely from a continuation of environmental policies encouraging
coal-to-gas switching in industry and buildings in order to improve local air
quality, together with robust growth in industrial activity during the first half
of the year.
Above: Birds eye view of the Shah Deniz Alpha platform in the Caspian Sea,
off the coast of Azerbaijan.
5
BP Statistical Review of World Energy 2019
Natural gas
Consumption and
production growth
Annual change,
bcm
200
Consumption
Production
150
100
50
0
Largest annual increases
in gas production
bcm
100
80
60
40
20
0
Average
2007-17
US
2018 Average
2007-17
2018
US
2018
Russia
2010
US
2014
USSR
1984
Russia
2017
China
Russia
Iran
Other
Global LNG supplies continued their rapid expansion last year, increasing by
almost 10% (37 bcm) as a number of new liquefaction plants in Australia,
US and Russia were either started or ramped up. For much of the year, the
strength of Asian gas demand, led by China, was sufficient to absorb these
increasing supplies. But a waning in the strength of Asian demand towards
the end of the year, combined with a mini-surge in LNG exports, caused
prices to fall back and the differential between Asian and European spot
prices to narrow significantly.
Asian prices have fallen further in the first part of this year, towards the
bottom of the price band defined by US exporters’ full-cycle and operating
costs. The prospect of further rapid increases in LNG supplies this year
means there is a possibility of a first meaningful curtailment of some LNG
supply capacity. The extent of any eventual shut-in will depend importantly
on the European market, which acts as the de facto ‘market of last resort’ for
LNG supplies.
Europe’s gas demand contracted by a little over 2% (11 bcm) last year, but
this fall in demand was more than matched (-13 bcm) by continuing declines
in Europe’s ageing gas fields. The small increase in European gas imports
was largely met by LNG cargos diverted from Asia towards the end of the
year as the Asian premium over European prices almost disappeared.
Russian pipeline exports to Europe were largely unchanged on the year,
maintaining the record levels built up in recent years, although with a slight
decline in their share of Europe’s gas imports. A key factor determining the
role that Europe will play in balancing the global LNG market over coming
years will be the extent to which Russia seeks to maintain its market share.
Coal
2018 saw a further bounce back in coal – building on the slight pickup
seen in the previous year – with both consumption (1.4%) and production
(4.3%) increasing at their fastest rates for five years. This strength was
concentrated in Asia, with India and China together accounting for the vast
majority of the gains in both consumption and production.
The growth in coal demand was the second consecutive year of increases,
following three years of falling consumption. As a result, the peak in global
45%
China’s contribution to global
renewables growth, more than the
entire OECD combined.
6
coal consumption which many had thought had occurred in 2013 now looks
less certain: another couple of years of increases close to that seen last year
would take global consumption comfortably above 2013 levels.
The growth in coal consumption was more than accounted for by increasing
use in the power sector. This is despite continuing strong growth in
renewables: renewable energy increased by over 25% in both India and
China last year, which together accounted for around half of the global
growth in renewable energy. But even this was not sufficient to keep pace
with the strong gains in power demand, with coal being sucked into the
power sector as the balancing fuel.
This highlights an obvious but important point: even if renewables are
growing at truly exceptional rates, the pace of growth of power demand,
particularly in developing Asia, limits the pace at which the power sector
can decarbonize.
Power sector and renewable energy
The power sector needs to play a central role in any transition to a low
carbon energy system: it is the single largest source of carbon emissions
within the energy system; and it is where much of the lowest-hanging fruit
lie for reducing carbon emissions over the next 20 years. So, what happened
last year?
Global power demand grew by 3.7%, which is one of the strongest growth
rates seen for 20 years, absorbing around half of the growth in primary
energy. The developing world continued to drive the vast majority (81%)
of this growth, led by China and India who together accounted for around
two thirds of the increase in power demand. But the particularly strong
growth of power demand in 2018 owed much to the US, where power
demand grew by a bumper 3.7%, boosted by those weather effects.
On the supply side, the growth in power generation was led by renewable
energy, which grew by 14.5%, contributing around a third of the growth;
followed by coal (3.0%) and natural gas (3.9%). China continued to lead
the way in renewables growth, accounting for 45% of the global growth in
renewable power generation, more than the entire OECD combined.
Renewable energy appears to be coming of age, but to repeat a point I made
last year, despite the increasing penetration of renewable power, the fuel
mix in the global power system remains depressingly flat, with the shares
of both non-fossil fuels (36%) and coal (38%) in 2018 unchanged from their
levels 20 years ago.
This persistence in the fuel mix highlights a point that the International
Energy Agency (IEA) and others have stressed recently; namely that a shift
towards greater electrification helps as a pathway to a lower carbon energy
system only if it goes hand-in-hand with a decarbonization of the power
sector. Electrification without decarbonizing power is of little use.
Above: Turbines at Goshen wind farm in Idaho Falls, US.
BP Statistical Review of World Energy 2019