logo资料库

随机前沿分析模型简明操作.pdf

第1页 / 共21页
第2页 / 共21页
第3页 / 共21页
第4页 / 共21页
第5页 / 共21页
第6页 / 共21页
第7页 / 共21页
第8页 / 共21页
资料共21页,剩余部分请下载后查看
¯c'.{† by Timothy J.Coelli, et al ´R n 2017 c 3 21 F 1 ¡Œ¯)c. 1.1 (‰5)c |^ŒO)cIJ…Œ/“5:§~^…Œ/“) ).d£C)D⁄)…ŒØŒ£Translog⁄)…Œ§Aigner and Chu £1968⁄˜kƒ^ø«{O).d)…Œ" b‰¡Œ„N ln qi = x ß§(‰5)c.–L«Xe iβ − ui, (1) iL«d\ØŒ|⁄k × 1§ui·N “¥§qiL«1iß§x u)|"ˇqi–¯£=( EˆK=§ˇ~bl'|N (0, σ2 ‰5⁄exp(x iβ) §⁄–(1) “L«·(‰5)c"·§øˆ{ ¯D(Eˆ'lm5§
1 ¡Œ¯)c. ).d¯)c.L«Xe ln qi = β0 + β1 ln xi + vi − ui qi = exp(β0 + β1 ln xi + vi − ui) × exp(vi) qi = exp(β0 + β1 ln xi) ¯D( (‰' 2 (3) (4) (5) × exp(−ui) ˆ5 Xª1⁄«§ßAB\§c.(‰'N5´ˆ4 ~35" ¶L«\§p¶L«" ßA |^\Y†xA) qA§ßB |^\Y†xB)qB £3ª¥§ø*^Ik×:5 L«⁄" XJvkˆA£=uA = 0, uB = 0⁄§@oßAßB c' O· q∗ A = exp(β0 + β1 ln xA + vA) –9 q∗ B = exp(β0 + β1 ln xB + vB) ª 1 ¯)c 3ª1¥§ßc^Ik⊗:5L«"w,§ßAcu(‰c §ˇ¯D(K·£=vA > 0⁄¶ßBcu(‰c e§·ˇ¯D(<·K£=vB < 0⁄" –w§dußA¯D (KˆAK£=vA − uA < 0⁄§⁄–ßA¢SqAu(‰c e" Ø¢S§c·*"n§ck7ø(‰c e!'“‡§@o¢Sdu¯D(ˆAp^'3(‰ ce·kU" ,§y¢¥¢Sı/“u'3(‰c e§·ˇıˆAØr" k¯D(Øk¨4Ku iβ)=εi = vi − ui > 0⁄§¢S*Uu( ˆA£=q∗ ‰c" i > exp(x
1 ¡Œ¯)c. 3 ¯c'83uˆA£–¡Eˆ˙§⁄" ~^ E˙u*¢SA¯c’ T Ei = qi exp(x iβ + vi) = exp(x iβ + vi) exp(x iβ + vi − ui) = exp(−ui) (6) d(6)“⁄E˙1ißk߃^\⁄U mا·[0,1]" w,§E˙T Ei§˜kI O¯)c.(2)“¥ºŒ" 1.3 '¯)c.ºŒO Aigner, Lovell and Schmidt£1977⁄’u.bXe vi ∼ iidN (0, σ2 v) ui ∼ iidN +(0, σ2 u) (7) (8) b“(7)L†¯D(vi·Æ'¯C§0σ2 v" b“(8)L†§ˆ˙ui ·Æ'¯C§¥”ºŒσ2 u§ ·‘§zuiV˙…Œ£pdf⁄·0σ2 u V˙…Œ /“" §—/?1ºŒO§Ø¯D(ˆ˙ªb§ ‹bp’!pÆ" 3øbe§D˚ˇƒ{£OLS⁄ˆ{…XŒˆO§ —{·q,{£ML⁄5O."3¢S¥§ˇ~|^Frontier^ ?1.ºŒO§8cT^#·4.1"Battese and Corra £1977⁄§ Frontier4.1Øø.ØŒq,…ŒUσ2 = σ2 u/σ2 ?1ºŒ z"ºŒγ·[0,1]§XJγ = 0§K.3EˆA§⁄kØuc l·d¯D(" uγ = σ2 v + σ2 1 2 3 ... 58 59 60 1 1 1 ... 1 1 1 L 1 Œ'EG1.dta 2.547725 3.189859 3.037594 ... 3.061426 3.300419 2.646529 2.242410 1.535361 1.628260 ... 2.233128 2.058473 1.726510 3.559169 4.347655 4.497574 ... 4.467332 4.099995 3.789132 e¡–').d)c.~§øªXƒ^Frontier4.1^ ?1.ºŒOE˙"duFrontier4.1 U?n5§§ˇdIØ ).d)…Œ>ØŒ§N.§Xe ln(Qi) = β0 + β1 ln(Ki) + β2 ln(Li) + (vi − ui) (9)
1 ¡Œ¯)c. 4 “¥§Qi! KiLi'O·! ]N˜§viui'Ol'" Œ 'eg1.dta¥„60ß1 c¡*§Uß?£firm-id⁄! ˇ? £time-period⁄!ØŒ£ln Qi⁄!ØŒ]£ln Ki⁄ØŒN˜£ln Li⁄^S¯ ¥y£L1⁄" ,ˇLFrontier4.1JłBlank.ins'M§S$1⁄I-'£ø p•¶eg1.ins⁄§-'SN’)”L2" 11 1ƒ^rJ ..1·E.§)ßdu¯D(ˆA˛^„eE ˙flK¶.2·E˙K.§)ß¡Œ^eE˙= ˇKflK¶w,§øp9ØE˙Kˇ'§ˇdJ.1" 121131ƒ^r‰Œ'¶¡'¶¡" nø¶¡· –?¿•¶§·Frontier4.1ƒ¶¡7Lƒ^='£–V\Œi'º ˛⁄¤L§ƒ–Œ'¶¡'¶¡ØA" 141ƒ^rJ·)…Œ·⁄…Œ" ø~f˜·).d )…Œ¯c.§ˇdJ1" 151˛fl^r·˜ØˇCØŒ" XJŒ'¥ˇCŒfi†LØ Œ§Jy¶XJvkØŒ§Jn"3ø~f¥§•fi†ØˇCLØŒ §ˇdJy" 161ƒ^rW˜¡Œ" øp§•„60ß§ˇd¡ Œ60" 171ƒ^rW˜ˇŒ" du·¡Œ§ˇŒkc§ˇd øpW1" 181ƒ^rW*Œ" Øu†¡Œ§øŒ·¡ ŒˇŒƒ¨¶Øu†¡Œ§I3ªƒ¨˜:~" Œ¶Øu¡Œ§øŒ¡Œ"ˇd§3ø~f¥AW60" 191ƒ^rW.¥)”CŒ" •).d)…Œ¥ ˜]N˜«\ØßK§ˇd)”CŒ2" 1101˛fl^r·˜ØMUD" XJ111J.1§øp·ØuD¶X J111J.2§øp·Øδ0D" w,§3ø~f¥§AT·ØuD" d §I.'/5߉·˜DXJb‰ui l'§AT Jn¶XJb‰ui l'§ATJy"w,§ø~fATJn" 1111˛fl^r·˜ØETAD" Øu.1§ETANE˙·˜‹ mu)Cz"w,§Øu¡Œ§I˜mCzflK§ˇdøpAJn" Øu.2§ETANKE˙ˇk=§dø17LWŒ£=K ˇŒ⁄§1101’uMU£7Ly" 1121˛fl^r·˜‰—'" 3?„e§øp·n§ˇ•F "Frontier4.1ˇL|¢5‰•—'§ø’^rˆ‰—'O( ı"
1 ¡Œ¯)c. 5 1 1=Error Components Model, 2=TE Effects Model J. L 2 -'EG1.ins EG1.dta Data File Name EG1.out Output File Name 1=Production Function, 2=Cost Function Logged Dependent Variable (y/n) Number of Cross-sections Number of Time Period Number of Observations in Total ‰Œ'¶¡ ‰'¶¡ )…Œ·⁄…Œ ˇC·˜LØŒ ¡Œ ˇŒ *Œ 1 y 60 1 60 2 n n n Number of Regressor Variables (Xs) MU (y/n)[Or Delta0 (y/n) if Using TE Effects Model] ·˜u‰δ0D ETA (y/n)[Or Number of TE Effects Regressors (Zs)] ·˜ηD‰WKˇŒ )”CŒ Starting Values (y/n) ·˜ˆ˜‰—'§Jn ,$1Frontier4.1^§.¡DOSI"øp‹˛fl^r·3“£=^ I¥⁄\-£\t⁄§·ˇL-'5$1§S£\f⁄" XJ\t§ @oI¥‹ƒ^r¯£f-'¥y⁄kflK¶XJ\f§KI -'¶¡£„*—¶⁄\§,£$1"øw5§flk?6—-' 8·d?£flKL§§ˇdøp\f2\-'¶ “$1Frontier4.1" §S$1§‹y¶EG1.out'§.'(J w«3ø'¥" d uFrontier4.1 ' L § · n r 1 . ˚ ˇ ƒ O £OLS⁄§dºŒ·ˆ¶1§^OLS O⁄ºŒ —'?1|¢§,?\SzL§¶1n§SL§“§= .ºŒq,O£MLE⁄"ˇd§'·Uøn‰w«(J§¿ ‹3w«E˙O"L3!L4L5 'Ow«OLSO(J!†L |¢O(J“q,O(J" L 3 'EG1.out1'OLSO the ols estimates are: beta0 beta1 beta2 sigma-squared coefficient standard-error t-ratio 0.24489834E+00 0.21360307E+00 0.11465114E+01 0.28049246E+00 0.53330637E+00 0.11398496E+00 0.48066617E-01 0.51498586E-01 0.58354940E+01 0.10355748E+02 log likelihood function = -0.18446849E+02 L3¥§beta0ØA.§beta1·]\£ln Ki⁄ºŒO§beta2· N˜\£ln Li⁄ºŒO§sigma-squaredL«.¥d¯D(ˆA˛ ^" l(J5w§]\N˜\5'O0.280.53§ ¿31% w˝5Y†ˇLtu" ·§duO·k§ˇ
1 ¡Œ¯)c. 6 dOLSO(J¿vk¢S¿´§Ue|¢—'" L 4 'EG1.out1'|¢O(J the estimates after the grid search were: beta0 beta1 beta2 sigma-squared gamma coefficient 0.58014216E+00 0.28049246E+00 0.53330637E+00 0.22067413E+00 0.80000000E+00 mu is restricted to be zero eta is restricted to be zero Øu|¢ºŒO'§•w“q,O (J£MLE⁄§L5" –w§OLS O(J’§MLE O¿§ Ok5" Frontier4.1γ = σ2 u/σ2 ØŒq,…ŒºŒz§ Oγ = 0.7972§ø’p31%w˝5Y†ˇLtu§L†E C·dˆ˙£u⁄"ºŒβ1 = 0.2811 β2 = 0.5365L«]N ˜'OU)”28.11% 53.65%§˜˛†L˘¿´§¿UˇL Ou" L 5 'EG1.out1n'q,O the final mle estimates are: beta0 beta1 beta2 sigma-squared gamma coefficient standard-error t-ratio 0.56161963E+00 0.20261668E+00 0.27718331E+01 0.28110205E+00 0.53647981E+00 0.11398496E+00 0.79720730E+00 0.47643365E-01 0.45251553E-01 0.63909106E-01 0.63909106E-01 0.59001301E+01 0.11855501E+02 0.33954545E+01 0.58436004E+01 mu is restricted to be zero eta is restricted to be zero log likelihood function = -0.17027229E+02 LR test of the one-sided error = 0.28392402E+01 with number of restrictions = 1 [note that this statistic has a mixed chi-square distribution] Frontier4.1'¥E˙O"œ“(6)ØßE˙ ‰´T Ei = exp(−ui)§d^z*ßE˙O§– gEˆ˙§ui"L6¥c·Frontier4.1$1'¥60 ßE˙O§•øpOAßEˆ˙§§w«31 n¥",§˙–w⁄·¥⁄kß˙§–w⁄·3‰ ßc1iß˙ˇ"" n§˙–ˇLˆ˙§ui
1 ¡Œ¯)c. 7 §¿–˙«m" 3A˙^¥§Shazam–A ‰ßE˙9«m§Frontierˆ{«m" L 6 'EG1.out1o'E˙OEˆ˙§ firm eff.-est. 1 2 3 ... 58 59 60 0.65068880E+00 0.82889151E+00 0.72642592E+00 ... 0.66471456E+00 0.85670448E+00 0.70842786E+00 mean efficiency = 0.74056772E+00 u 0.42972378E+00 0.18766600E+00 0.31961877E+00 ... 0.40839756E+00 0.15466225E+00 0.30033820E+00 1.4 '¯)c.ºŒO '.·Øˆ˙bk⁄Cz§dui ∼ iidN +(µ, σ2 u)" '’§'„eˆ˙20§·~Œ" øp§• –ØŒ)c.~§ƒ^Frontier4.1^O'c." .N/“Xe ln(Qi) = β0+β1 ln(Ki)+β2 ln(Li)+β3 ln(Ki)2+β4 ln(Li)2+β5 ln(Ki) ln(Li)+(vi−ui) (10) “¥§Qi!Ki!Livi„´.e‰§·ˆ˙uil '" ~faq§øp•˜kŒ'eg2.dta£L7⁄" du ØŒ)…Œ’).d)…ŒO\]N˜\† p§ˇdŒ'¥IO\n"§•flkØ⁄kCØŒ" L 7 Œ'EG2.dta 1 2 3 ... 58 59 60 1 1 1 ... 1 1 1 2.547725 3.189859 3.037594 ... 3.061426 3.300419 2.646529 2.242410 1.535361 1.628260 ... 2.233128 2.058473 1.726510 3.559169 4.347655 4.497574 ... 4.467332 4.099995 3.789132 5.028404 2.357333 2.651230 ... 4.986860 4.237312 2.980835 12.667690 7.981118 18.902110 6.675219 20.228170 ... 7.323218 ... 19.957060 9.976124 16.809960 8.439730 14.357520 6.541973 ’ ~ f§ - ' I › # ‰ Œ ' ' ¶ ¡§ ' O EG2.dtaEG2.out¶)”CŒ?U5§ˇO\]N˜\
1 ¡Œ¯)c. 8 †p¶’uMU DJy§ˇXc')”§XJ؈˙b 'y§'n" ƒ-–C§I˜m CzK" 1 1=Error Components Model, 2=TE Effects Model J. L 8 -'EG2.ins EG2.dta Data File Name EG2.out Output File Name 1=Production Function, 2=Cost Function Logged Dependent Variable (y/n) Number of Cross-sections Number of Time Period Number of Observations in Total ‰Œ'¶¡ ‰'¶¡ )…Œ·⁄…Œ ˇC·˜LØŒ ¡Œ ˇŒ *Œ 1 y 60 1 60 5 y n n Number of Regressor Variables (Xs) MU (y/n)[Or Delta0 (y/n) if Using TE Effects Model] ·˜u‰δ0D ETA (y/n)[Or Number of TE Effects Regressors (Zs)] ·˜ηD‰WKˇŒ )”CŒ Starting Values (y/n) ·˜ˆ˜‰—'§Jn OLS: beta0 beta1 beta2 beta3 beta4 beta5 sigma-squared L 9 'EG2.outOLSMLEO(J coefficient standard-error t-ratio 0.55625612E+00 0.36337949E+00 0.15307857E+01 0.37854314E+00 0.19384373E+00 0.19528263E+01 0.34779928E+00 0.21214558E+00 0.16394369E+01 -0.92959011E-01 0.30049984E-01 0.84811417E-02 0.11036711E+00 0.45170712E-01 0.34924524E-01 0.45231451E-01 -0.20579488E+01 0.86042644E+01 0.18750541E+00 log likelihood function = -0.15857202E+02 µ = σ2 u = 0 £\⁄LLF MLE: beta0 beta1 beta2 beta3 beta4 beta5 coefficient standard-error t-ratio 0.75634273E+00 0.31780239E+00 0.23799152E+01 0.38643648E+00 0.16320617E+00 0.23677810E+01 0.35175493E+00 0.17255941E+00 0.20384569E+01 -0.93929604E-01 0.30592987E-01 0.85664268E-02 0.41900823E-01 0.28655714E-01 0.37942019E-01 -0.22417126E+01 0.10676051E+01 0.22577678E+00 sigma-squared 0.45413086E+00 0.29132405E+00 0.15588513E+01 gamma mu 0.89276949E+00 0.96460242E-01 0.92553105E+01 -0.12734743E+01 0.12297575E+01 -0.10355491E+01 eta is restricted to be zero log likelihood function = -0.13910334E+02 ˆLLF LR test of the one-sided error = 0.38937374E+01 with number of restrictions = 2 [note that this statistic has a mixed chi-square distribution]
分享到:
收藏