Systems Engineering — Theory & Practice
Xó§ †¢‚
¥ã©aÒ: F830.92
[|,4©
(úóûŒÆ7Æ,ɲ 310018)
1 31ò1 4Ï
2011
4
©?Ò: 1000-6788(2011)04-0778-07
©zè: A
Ä žC Copula7†xD/
Á‡|^žC CopulaïÄ?§e¥Œ †Ṡ xD/¯.
^ AR(1)-GJR(1,1)-t.£ãˆÂÇ>S©,±žC SJC Copula£ãÂ
Çă5,©¥Œ †{ != !F ±9† 2000
1 2010
11ÏxéÄ.¢y²:3?§¥¥Œ †{!
=±9F †±‡feƒX,†† eƒ5§
\¥wͪ³;†ˆS ƒ5†± Y².
…
xD/;7;žC Copula
Vol.31, No.4
Apr., 2011
Financial market openness and risk contagion: A time-varying
Copula approach
WANG Yong-qiao, LIU Shi-wen
(College of Finance, Zhejiang Gongshang University, Hangzhou 310018, China)
Keywords financial contagion; capital market openness; time-varying Copula
Abstract The paper proposes a time-varying Copula to study financial contagion issues between China
mainland and major international stock markets in the opening process of Chinese capital markets. By
modeling marginal distributions as AR(1)-GJR(1,1)-t and dependence relations as time-varying SJC Cop-
ula, the paper analyzes time-varying co-movements between China mainland and US, UK, Japan, HK
stock markets in the interval from Jan 2000 to Nov 2010. The empirical results show that: the lower-tail
dependence with US, UK and Japan still stays in a weak level, while the lower tail dependence with HK
steadily keeps increasing in the opening process; the upper-tail dependence with all international major
stock markets shows a consistent low level.
1ó¥Œ g ±5, ‡ƒé4 |Åì=CǑ.7 | Œ©
©.7 |4ž,x ŒU3ˆ‡ |D4,ùǑ ¥Œ 3æ³7ˆÅ¥
±3σ [1].X¥²Åì\.²,¥℄ | ä,k²Œ
®² 2 ‡Õ |.©òïÄ?§¥¥Œ †.̇ ƒxé
Ä,dïÄé7 |x››!7i9Ž/57¯‡ †øòäk‡y
¢¿Â.8
ïÄ7 |xD/ {̇kƒXê{ [2]!± GARCHǑeõ. [3]!±
VAR {ǑÄ:Æ‚=#Ï [1]±94Š [4].ù {Ä ,=b
ƒ53ž ± C, ž©ã,bãSƒ5± C.5û §‚
ÂvFÏ: 2010-05-31
℄Ï8:<©¬‰ÆïÄÄ7 (10YJC790265);úŽg‰ÆÄ7 (Y7080205);úŽ<©‰:ï
ÄÄ/ (7Æ)
Šö{0:[|,Ƭ!BÇ, ¯7x†7êâ÷ïÄ, E-mail: wangyq@amss.ac.cn;4©,a¬ï
Ä, ¯7xïÄ.
2.1 SJC Copula
[|,:Ä žC Copula7†xD/
1 4Ï
£ã?§¥¥7 |†S7 |xD/†ÄÑïÄ, U‡§¥
‡5Cz.
©Ì‡^žC Copula {5ïÄ?§e¥ |†Ṡ |ƒ
xéÄ.Ó§aïĤ^ {ƒ,d {k ‡²w`:: ^ Copulaê£ã7 |
ƒ5,ÓƒXêa {ƒ§U?š‚5ƒ5,Ó GARCHa.† VARa.ƒ§
éÂÇ Ä5ÆŠî‚b,U/Ó℄ |š‚5ƒ5†ƒ1Ǒ;
žCëêU/£ã?§e¥7 |†.7 |éXÄ5Cz.
©¤^ CopulaêǑé¡ Joe-Clayton (SJC) Copula,§Ué B£ã é¡eƒ5†
ƒ5.©Xe:1 2©0žC SJC Copulaê9ëê¯,1 3©|^žC SJC
Copula£ãy†{ dó²ê!=7ž 100ê!F Nikkei225ê±9
† ðêƒÄƒ, ©?1{‡.
2žC Copula
Šâ Sklar [5],? N驌±©Ǒ N‡>S©ê†‡ Copulaê.…
Xˆ>S© ëY, Copulaê . ù‡ CopulaêÅCƒƒ
5, CopulaêÏdǑ¡Ǒ6ê. Copulaêõé©?CǑ{ .X
é©,Œk|^Œ{ˆ>S©,2^Œ{ Copulaê.
Copulaꌱé{ /?7 |ƒƒ5,ƒ5£ã‡7 |
() , Ä¬å‡ | ( ).X ‡7 | CopulaêǑ C(u, v),
eƒXꆃXê©Ǒ
~„ Copulaêk Copula, t-Copula, Gumbel Copula, Clayton Copula, Frank Copula.ù
Copulaê^ £ã7 |xéÄžk²w"€, Copula† t-Copula{Ó7
|šé¡ƒ5, Gumbel Copula{Óeƒ5, Clayton Copula{Óƒ5,
Frank Copulaêéƒ5†eƒ5{Ó.
Joe[6]Ñ^ Joe-Clayton Copulaê (±e{¡ JC Copula)£ã7 |ƒ5,ê/
ªXe
Ó
¡~„ Copulaêƒ, JC CopulaêkwÍ`:,§Œ±Óž£ãƒ5†eƒ
5.éAeƒXꆃXêǑ λL = 2−1/γ, λU = 2 − 21/κ.
JC CopulaEk‡Ì‡"€,£ãeƒXêƒÓ驞, JC Copulaê š
é¡.ǑŽÑã":, Patton[7]Ñ^é¡ JC Copulaê (±e{¡ SJC Copula)5Ǒx |
ƒ5:
d SJC CopulaUÓž£ãeƒ5,…U?šé¡eƒ5,Ïd2A^ 7
| 7℄xD/ïÄ.
2.2žC SJC Copula
7 |ƒXŒU²75CzCz,Ïd‡ï žC Copula.£ã
7 |Äš‚5ƒ5 [8].žC Copula. Œa,a ëêžC,a ž
C [9−10].© ^ëêžCÄ SJC Copula©7 |ă5.
tž ÅC>Sê©Ǒ f1† f2,éA\È©êǑ F1† F2,©êëê
Ǒ θ1† θ2 (XëêÄžC,Œ¤ θ1t† θ2t), SJC CopulažCëêǑ θct = {κt, γt},é
CJC (u, v) = 1 −1 −n[1 − (1 − u)κ]−γ + [1 − (1 − v)κ]−γ − 1o−1/γ1/κ
CJC (u, v) + CJC (1 − u, 1 − v) + u + v − 1
,
λU = lim
u→1
,
κ ≥ 1, γ > 0
(2)
λL = lim
u→0
C(u, u)
u
1 − 2u + C(u, u)
1 − u
CSJC (u, v) =
2
779
(1)
(3)
780
∂u∂v
T
Xt=1
T
Xt=1
T
Xt=1
(4)
(5)
(6)
(7)
(8)
log f2 (x2t; θ2)
log f1 (x1t; θ1) ,
ˆθ2 ≡ arg max
θ2
ˆθ1 ≡ arg max
θ1
ˆθct ≡ arg max
θct
f (x1t, x2t; θ1, θ2, θct) = f1(x1t; θ1) · f2(x2t; θ2) · c(F1(x1t; θ1), F2(x2t; θ2); θct)
log cF1(x1t; ˆθ1) · F2(x2t; ˆθ2); θct
Xó§ †¢‚
1 31ò
Ä5ÆŒ±«Ǒ
¥ c(u, v) = ∂C(u,v)
Ǒ Copula.
žSǑ (x1t, x2t), t = 1, 2, · · · , T .éû Ä5Æëê θ1, θ2† θc?1Œ
ž,Œ© ?1 [11],1é >S©ëêˆg?1Œ
1é Copulaëê?1Œ
31ž,3 T|Ä: 2T‡ëê,ù Œ1.
Patton[7]ïÆ3beƒXê 15ÆÄ:?1 CopulaêžCëê,
¥ Λ(·)Ǒ Logisticê Λ(x) = 1/(1 + e−x).
\ Λ(·) Ǒy 0 < λL
t < 1. ut = F1(x1t; ˆθ1), vt = F2(x2t; ˆθ2).ã z §a
ARMA(1, q).,ê q„ 10.d JC Copula ‡eƒXê† ‡ëêé
κt = 1/ log2(2 − λU
A,¤± žCëê κt† γtŒ±Ï γt = −1/ log2 λL
t )‡í.ϱï,ž
Cëê κt† γtŒ±Ïéëê ωL, βL, αL, ωU , βU , αUŒ.
3¢y©!±žC SJC Copula.©yê (SSEC)†{ dó²ê (DJIA)!=
7žê (FTSE100)!FF² 225ê (Nikkei225)±9† ðê (HSI)ƒxéÄ
X.d kéé,Ïd=±yS/ .{!F .̇²
,©±5.† S‡7¥,† ²†Œ²éX;,¤±±ð
ꩌ †† ƒéÄ.
3.1êⱈê±ÂÇŠǑïÄ,ÀžǑ 2000
1 4F 2010
11 1F.d
90
¥ ¤žÏ, „ õ,é §Ǒ ,Ä? 4G.
?\#V±5,¥Ï\\ WTO,íÑ QFII† QDII›,í?®ÇU€X„
℄ |é §Åì\Œ.ÏdÀ 2000
± êâ5ïÄ?§¥¥ †Ṡ
ƒxéXä5.ˆÂÇ5Ÿ„ 1.y,S |ÂÇ
ÑyѲw. Jarque-Bera²ˆêÂÇäk²wš5.
1£ã5
t = Λ
ωL + βLλL
t = Λ ωU + βU λU
|ut−j − vt−j|
|ut−j − vt−j|!
q
q
Xj=1
Xt=1
t < 1, 0 < λU
λL
λU
t−1 + αL ·
t−1 + αU ·
1
q
1
q
t
Š
Jarque-Bera
SSEC
0.0013
0.0364
0.0383
4.7614
72
DJIA
FTSE100
Nikkei225
0.0000
0.0279
−1.9518
21.8189
8557
−0.0009
0.0267
−0.7468
11.1462
1589
−0.0011
0.0340
−2.2547
25.6194
12324
HSI
0.0008
0.0182
0.0347
7.3024
453
.εt ∼ iid tν
µ
φ
ϕ
G
A
L
ν
781
(9)
DJIA
FTSE100
Nikkei225
HSI
r ν
σ2
t (ν − 2)
t−1 + LI (−εt−1) ε2
t−1 + Aε2
t−1
SSEC
0.0008
0.0480
0.0000
0.9191
0.0492
0.0395
6.1176
0.0018
0.0144
0.0000
0.8990
0.0358
0.0856
13.3770
Rt = µ + φRt−1 + εt
σ2
t = ϕ + Gσ2
0.0017
−0.0904
0.0000
0.9120
0.0120
0.1561
8.7773
0.0011
−0.0358
0.0000
0.8165
0.0000
0.2646
9.1396
0.0004
−0.0326
0.0000
0.8828
0.0060
0.0882
6.9261
1 4Ï
[|,:Ä žC Copula7†xD/
3.2>S©
Šâ[,æ^ AR(1)-GJR(1,1)-t.ŠˆÂÇ>S©,ä/ªXe
I (x)Ǒ«ê, x > 0ž, I (x) = 1, x ≤ 0ž, I (x) = 0.ˆêÂÇ>S©ëê
„ 2.éA¤kÂÇ LÑǑ,« |℄ö類Ek‡A.
2>S©ëê
Diehoid [12]‡é[ >S©?1 ‡ : Õ 5 , Ó© . Ljung-
Box ²,3 5%wÍ5Y²eù 5‡žS 3gƒ,=ŒǑC† S Õ
.|^ Kolmogorov-Smirnov ÄÓ©,= VÇÈ©C† S ÄÑ [0,1]!©
, 5‡S3 5%wÍ5Y²eÏ .ã² AR(1)-GJR(1,1)-t.Œé£ãˆÂ
Ç>S©.
3.3ãy©
[13]Ǒ©¥℄ | ª³Œ± ÑÖ℄ ‡Æ5 .
2001
12¥\\ WTO¿«ì7ÑÖ3ÏSÅ,ù ¥℄ |ÑÖ
. 2003
71 QFII ,ùX ‚Å℄ö©℄S℄ |,
2006
11S1| QDIIÄ7¤ X¥‚Å℄ö©ª?S℄ |,
2005
7,<¬1®ÇU€¢S ò¥℄ |ÅìíSz.ù‡¯‡é\¯¥℄
|?§äkŒ¿Â, ¥©ÅS℄ |5¯‡.Ïd©±ù‡
5¯‡ŠǑ©.: 2000
± ¥℄ |?§©Ǒʇã,éùʇãS¥
†.̇ ƒxéX©ƒ± ,±B/£ãxéX3?§¥ÄC
z.
3.4 CopulažCëê
3>S©Ä:,|^! 2.2¥1¥ {éžC SJC Copula 6‡žCëê?1
Œ.Ǒ©Ä5,é~ê SJC Copula.ëêǑ?1.ëê9.[
` AIC„ 3.
Ä
~ê
3 Copulaëê
−2.5295
−2.0490
0.0126
−15.9588
−0.0003
0.0000
−8.6368
−16.0482
−3.8592
1.3835
−2.8254
1.7010
1.1178
−65.6056
−2.3802
4.0845
−8.3223
−11.6201
0.0496
−0.0022
−22.6700
−4.5618
0.0055
0.0055
−6.6865
−0.2058
−0.0011
−6.2898
SSEC-DJIA
SSEC-FTSE100
SSEC-Nikkei225
SSEC-HSI
ωL
βL
αL
ωU
βU
αU
AIC
λU
λL
AIC
0
0.0426
−9.0154
0.0021
0.0089
−6.2926
0
0.1128
−21.8132
0.0932
0.1313
−48.4748
782
Xó§ †¢‚
1 31ò
3.5eƒ5©
y†‡SêžCeƒ5„ã 1.Œ±wÑ¥Œ †{!=
ƒeƒ53?§Ê‡ã?3 Y²,†{ DJIAeƒXê3 0.05†
2Ä,†= FTSE100eƒXê3 0.01†,=3gˆÅÏǑvkÑy²wÅÄÄÑ.
… ã 1Œ²wwÑ:ù ‡[eƒ5†²,vkyª³,žC5 ²w.
AICEǑ`²ƒžC SJC Copula,~ SJC CopulaU/[¥Œ †{=
ƒƒ5.†=žCeƒXêš~ªC ~ê,̇d eƒXê Ä §¥
~êXêŒ § Xê.㩲¥ †{= ƒxéXf,…
3 Y²,¥ †{= ÓžÑy4eyVÇé .égˆÅ
ƒ
5ïÄkéõ©z,ïÄц©š~C.Ç3† [14] ^žC Copula
{ y¥{ƒgˆÅ ƒ5k ~,Czš~.÷ȆW [15] ^žCëê
t-Copula { y¥{ 3gˆÅ
ƒ5k‡\.Ïd3S℄¥ò℄3
¥Œ †{= ƒ?1©Ñ℄Uk©Ñ℄x.
¥ †F ƒeƒXê3 0.15†2Ä,Ї 0.2,={ ‡Œ.e
ƒXêžC5\²w,¿vk²wª³5Cz. AICE²žC SJC Copulaé¥
†F ƒ5k[,¥ †F ƒeƒXêª ž
C5.ù²¥ †F ƒxéÄ={ ,¿…3 ÅÄ,¥ †
F ÓžÑy4eyŒU5 ,Œ±ǑX¥Œ℄ |§\,†
F xéÄX¿vkwÍ\.
¥Œ †† eƒXê3
‡ãÑvkyѪ³5, 3\
Ñy 6\. 2005
®ÇU€† 2006
QDII›íу ¥ †† ƒe
ƒXêÑyŒÌ.3?§¥¥Œ †† eƒ5yÑŒ
žC5,311Êã ÑyŒŠ,žˆ 0.84.¿©`²žC SJC CopulaŒ±
/Ó¥Œ †† ƒeƒ5ÄCz,ù‹ AICE.±
²X¥℄ |?§\¯,¥ †† ƒxéÄy5²w,¥
Œ †† ÓžÑy4eyVÇ5Œ.
WTO
EX
WTO
EX
0.025
0.02
0.015
0.01
0.005
0
EX
EX
0.1
0.08
0.06
0.04
0.02
0
00/01
0.25
0.2
0.15
10/11
10/11
0.1
0.05
0
10/11
00/01
01/12 03/07
00/01 01/12 03/07
1.0
0.8
0.6
0.4
0.2
WTO
WTO
01/12 03/07
05/07 06/11
05/07 06/11
05/07 06/11
¨«žC
- -«~ê
ã 1y†Ṡ |êeƒ5
3.6ƒ5©
y†‡SêžCƒ5„ã 2.Œ±wÑ,3¥℄ |?§¥¥
Œ †{!=±9F ƒXêAǑ" (ÑŒ "),²¥ †{=
±9F ÓžŒVÇ4. 2000
±5,{= ±9F Œvkå¥
Œ,¥ 3 2007
Œ ž{ ÏgˆÅ Ǒ.8
Sé¥
00/01
01/12 03/07
05/07 06/11
10/11
0
[|,:Ä žC Copula7†xD/
1 4Ï
†Ṡ ƒƒ5ïŒÑ^ Copula† t-Copula,Ñéƒ5ïÄ.
ƒ{= †F ,¥Œ †† ƒXêƒé‡Œ,Ǒ?
Y²,†3 0.1†2Ä.…3¥℄ |§¥ƒé ,¿vkyѪ³.ù
²¥Œ †† ÓžŒVÇǑ Œ.†§Fh [16]|^~ê Gumbel CopulaǑx
y†† ðêƒxéÄ,уǑ 0.09,†©š~C.d ¥
Œ†† ;²éX±9õŒúi3 /Óž ,Œ² ѱ9 |ž
E ¬é /℄öƒÓÏ,¤±ƒ{= ±9F ,¥Œ ††
ƒyÑŒƒ5.
783
×10
EX
2.5
2
1.5
1
0.5
0
×10
EX
2.5
2.4
2.3
2.2
2.1
2
10/11
0
0
0.5
0.05
10/11
10/11
00/01
05/07 06/11
01/12 03/07
05/07 06/11
4 ©^žC SJC Copula.©?§¥¥ †Ṡ ÄxéÄ,ž
C5Œ±£ãxéXÄ5Cz, SJC CopulaŒ±£ãšé¡eƒ5.¢y
²,¥Œ †{!=±9F ƒÎ±fƒ5†eƒ5,
Óž ŒU5 Œ,Ä 3xD/X;Œ †† éÄ3
\.©ïĤéS7℄kŒëdŠ.d ¥Œ †{!=±9F
ƒƒ5,3ù ©Ñ℄Œ±k©Ñ℄x.¥Œ†† ƒ
d 3Œƒ5,A eƒ53¥Œ℄ |§¥kÅ\ª³,3
¥Œ †† ?1℄ž‡5¿‰4¯‡ ¤E¤℄x,; /
Óž¤E¤ãŒ℄Š. 7xÆ,d ¥Œ ††
eƒžC5²w,…yÑÅ\ª³,X^a { öƒ5,é
ŒU ℄|x.
ë©z
[1] Hong Y M, Liu Y H, Wang S Y. Granger causality in risk and detection of extreme risk spillover between financial
markets[J]. Journal of Econometrics, 2009, 150(2): 271–287.
[2] King M, Wadhwani S. Transmission of volatility between stock markets[J]. Review of Financial Studies, 1990,
3(1): 5–33.
[3] Tse Y K. A test for constant correlations in a multivariate GARCH model[J]. Journal of Econometrics, 2000,
98(1): 107–127.
00/01
01/12 03/07
×10
2.5
2
1.5
1
EX
05/07 06/11
0.2
0.25
0.15
10/11
00/01
01/12 03/07
05/07 06/11
EX
¨«žC
- -«~ê
ã 2y†Ṡ |êƒ5
00/01 01/12 03/07
0.1
Xó§ †¢‚
1 31ò
[4] Longin F, Solnik B. Extreme correlations of international equity markets[J]. Journal of Finance, 2001, 56(2):
[5] Sklar A. Fonctions de r´epartition `an dimensions et leurs marges[J]. Publ Inst Statist Univ Paris, 1959(8): 229–
784
649–676.
231.
527–556.
401–423.
Gong P, Huang R B. Analysis of the time-varying dependence of foreign exchange assets[J]. Systems Engineering
— Theory & Practice, 2008, 28(8): 26–37.
[9] Rodriguez J C. Measuring financial contagion: A Copula approach[J]. Journal of Empirical Finance, 2007, 14(3):
[6] Joe H. Multivariate Models and Dependence Concepts[M]. London: Chapman & Hall, 1997.
[7] Patton A J. Modelling asymmetric exchange rate dependence[J]. International Economic Review, 2006, 47(2):
[8]÷È,W. ®℄žCƒ5© [J].Xó§ †¢‚, 2008, 28(8): 26–37.
[13]. ¥℄ | À [J]..², 2003(3): 67–71.
[14]Ç3, .gˆÅ! |x† ƒ5 [J]..², 2010(3): 95–108.
[15]÷È,W.gˆÅé¥ Ǒ¢y© ——Ä ¥{ éÄ5© [J]. , 2009, 21(2):
[16],§Fh.yêðê Copulaƒ5© [J].Xó§, 2006, 24(5): 88–92.
21–32.
Gong P, Huang R B. Empirical analysis of sub-prime mortgage crisis’s impacts on Chinese stock market — Based
on the interaction between Chinese and American stock markets[J]. Management Review, 2009, 21(2): 21–32.
[10] Harvey A. Tracking a changing Copula[J]. Journal of Empirical Finance, 2010, 17(3): 485–500.
[11] Patton A J. Estimation of multivariate models for time series of possibly different lengths[J]. Journal of Applied
Ba S S. Review on the choices of the opening path of Chinese capital markets[J]. World Economics, 2003(3):
67–71.
Wu J L, Zhang E H. Subprime mortgage crisis, market risk and dependence between stock markets[J]. World
Economics, 2010(3): 95–108.
Econometrics, 2006, 21(2): 147–173.
International Economic Review, 1998, 39: 863–883.
[12] Diebold F X, Gunther T, Tay A S. Evaluating density forecasts with applications to financial risk management[J].
Li Y, Cheng X J. Copula dependence analysis between SSEC and HSI[J]. System Engineering, 2006, 24(5):
88–92.