logo资料库

Cerda, Ramón M.Understanding quartz crystals and oscillators 晶体管....pdf

第1页 / 共325页
第2页 / 共325页
第3页 / 共325页
第4页 / 共325页
第5页 / 共325页
第6页 / 共325页
第7页 / 共325页
第8页 / 共325页
资料共325页,剩余部分请下载后查看
Understanding Quartz Crystalsand Oscillators
Contents
Preface
Acknowledgments
1 Quartz Crystals
1.1 Introduction
1.2 Mother Nature Used Quartz First
1.3 The Curie Brothers
1.4 Piezoelectricity
1.5 Quartz
1.6 Left-Handed and Right-Handed Quartz
1.7 Quartz Is Anisotropic
1.8 A Timeline of Quartz Crystals and Oscillators
1.9 Important Definitions
1.9.1 Time
1.9.2 Second
1.9.3 Frequency
1.9.4 Nominal Frequency
1.9.5 Clock
1.9.6 Room Frequency or 25°C Frequency
1.9.7 Fractional Frequency
1.9.8 Allan Deviation
1.9.9 Accuracy, Precision, and Stability
1.9.10 Accuracy
1.9.11 Precision
1.9.12 Stability
1.9.13 Frequency Stability
1.9.14 Short-Term Frequency Stability
1.9.15 Medium-Term Frequency Stability
1.9.16 Long-Term Frequency Stability
1.9.17 Aging and Drift
1.9.18 Ambient Temperature
1.9.19 Frequency-Temperature Stability (Frequency Versus Temperature Stability)
1.9.20 Tolerance
1.9.21 Calibration
1.9.22 Jitter
1.9.23 Oscillator
1.9.24 Phase Shift
1.9.25 Phase Noise
1.9.26 Resonance
1.9.27 Resonance Frequency
1.9.28 Quality Factor, Q
1.9.29 Resonator
1.9.30 Quartz Crystal
1.9.31 Quartz Crystal Oscillator
1.9.32 Random Deviations
1.9.33 Systematic/Deterministic Deviations
1.9.34 Uncertainty
1.10 Frequency Stability in Perspective
1.11 Growing Quartz
1.12 Swept Quartz
1.13 A Crystal Is Born
1.14 Inside the Crystal Unit
1.14.1 The Glass Seals
1.14.2 The Conductive Epoxy Cement
1.15 Sealing the Crystal Unit
1.15.1 Solder Seal
1.15.2 Resistance Weld
1.15.3 Cold Weld
1.15.4 Seam Weld
1.15.5 Epoxy Seal
1.16 Testing for Moisture
1.17 Crystal Resonator Mechanical Equivalent Model
1.18 Crystal Resonator Electrical Equivalent Circuit
1.19 Derivation of Equivalent Circuit Equations
1.20 Series-Resonant and Parallel-Resonant Oscillators
1.20.1 Definitions of Series and Parallel Crystals
1.21 Load Capacitance
1.22 Fundamental Mode Crystals
1.23 Overtone Mode Crystals
1.24 Spurious Modes
1.25 Expanded Quartz Resonator Equivalent Circuit Model
1.26 The Ideal Phase Angle of the Quartz Crystal Resonator
1.27 Pulling the Crystal Frequency by Changing the Load Capacitance
1.28 Zero-to-Pole Spacing
1.29 Trim Sensitivity
1.30 Important Unitless Quantities
1.31 Resistance of the Crystal Above Series Resonance (ESR)
References
2 Quartz Crystal Characteristics
2.1 Introduction
2.2 Defining the Frequency Versus Temperature Curve
2.3 Quartz Crystal Cuts
2.3.1 The AT, BT, and SC Cuts
2.4 Temperature Characteristics of AT Cut, BT Cut, and SC Cut
2.4.1 AT-Cut Frequency-Temperature Curves
2.4.2 BT-Cut Frequency-Temperature Curves
2.4.3 SC-Cut Frequency-Temperature Curves
2.5 Thickness Versus Frequency of Quartz Wafers (Blanks)
2.6 Bechmann Frequency-Temperature Curves
2.7 AT Cut Versus SC Cut
22.7.1 AT-Cut Versus SC-Cut Pros and Cons
2.8 The SC-Cut B-Mode Temperature Characteristic
2.9 Vibrational Displacements of AT Versus SC Cuts
2.10 Drive Level
2.10.1 High Drive Level
2.10.2 Low Drive Level
2.10.3 Correlation Drive Level
2.10.4 Maximum Drive Level
2.11 Drive Level Dependence (DLD) or Drive Level Sensitivity (DLS)
2.12 Aging
2.13 How Drive Level Affects Aging
2.14 Activity Dips
2.15 Sleepy Crystals Phenomenon
2.16 Specifying Crystals
2.16.1 Specifying the Nominal Frequency
2.16.2 Specifying the “Mode” of Operation
2.16.3 Specifying a Fundamental Crystal
2.16.4 Specifying an Overtone Crystal
2.16.5 Specifying a Parallel or Series-Resonant Crystal and Load Capacitance
2.16.6 Specifying the Crystal’s Resistance
2.16.7 Specifying an AT-Cut Crystal
2.16.8 Specifying a BT-Cut Crystal
2.16.9 Specifying an SC-Cut Crystal
2.16.10 Specifying the Frequency Calibration (Tolerance)
2.16.11 Specifying the Frequency-Temperature Stability
2.16.12 Specifying the Operating Temperature Range
2.16.13 Specifying the Shunt Capacitance, C0
2.16.14 Specifying the Aging Rate
2.16.15 Specifying an Overall Accuracy
2.16.16 Specifying the Trim Sensitivity
2.16.17 Specifying a Pullable Crystal (“Pullability”)
2.16.18 Specifying the Drive Level
2.16.19 Specifying Drive Level Dependence (DLD)
2.16.20 Specifying Spurious Responses
2.16.21 Specifying the Quality Factor Q
2.16.22 Specifying the Motional Inductance, L1
2.16.23 Specifying Inverted Mesa Crystals
2.16.24 Specifying a Tuning Fork Crystal
2.16.25 Specifying Strip Crystals
2.16.26 Specifying Mechanical Shock Resistance
2.17 Crystal Unit Handling Precautions
2.17.1 High-Temperature Storage Precautions
2.17.2 Electrostatic Discharge (ESD) Precautions
2.18 Crystal Specification Template
References
3 Advanced Quartz Crystal Resonator Topics
3.1 Introduction
3.2 Flicker Noise
3.3 Introduction to Fluctuation Equations
3.4 Quartz Resonator Flicker Noise Model
3.5 Quartz Resonator Drive Level Sensitivity
3.6 Resonator Q and 1/f Noise Versus Drive Level
3.6.1 1/f Flicker Noise Versus Drive Level
3.6.2 Resonator Q Versus Drive Level
3.6.3 Resonator Q Versus Manufacturing Defects
3.7 The Effect of Acceleration on Quartz Resonators
3.7.1 Gravitational Acceleration
3.7.2 Sinusoidal Acceleration/Vibration
3.7.3 Random Acceleration/Vibration
3.8 Drive Level Dependency Testing
References
4 MEMS Resonators and Oscillators
4.1 Introduction
4.2 Some MEMS Terminology
4.2.1 Electromechanical Systems
4.3 MEMS Resonators
4.3.1 Quartz MEMS (QMEMS)
4.3.2 MEMS Resonator Equivalent Circuit Model
4.3.3 Frequency-Temperature Performance of MEMS
4.3.4 Phase Noise and Jitter Performance of MEMS Oscillators
4.4 MEMS Oscillators Versus Quartz Oscillators
4.4.1 Performance Claims/Reports from MEMS Vendors
4.4.2 Present Challenges Facing Commodity MEMS Oscillators
References
5 Choosing the Correct Crystal for the Application
5.1 Introduction
5.2 Choosing the Correct Crystal for a Low-Cost CLOCK
5.2.1 Selecting the Nominal Frequency of Operation
5.2.2 Selecting the Type of Cut (AT, BT, or SC Cut)
5.2.3 Selecting the Load Capacitance
5.2.4 Determining the Maximum ESR Value
5.2.5 Determining If the Feedback Resistor Is Built In
5.2.6 Frequency-Temperature Stability
5.2.7 Calibration Tolerance
5.3 Choosing the Correct Crystal for a VCXO
5.3.1 Changing/Varying the Load Capacitance
5.3.2 VCXO Design Example
5.4 Choosing the Correct Crystal for a TCXO
5.4.1 Frequency-Temperature Hysteresis
5.4.2 Activity Dips (Perturbations)
5.4.3 Aging Rate
5.4.4 Frequency-Temperature Characteristics
5.4.5 Summary Comments for TCXO Crystals
5.5 Specifying a Crystal for an OCXO Application
5.5.1 Turnover Temperature
5.5.2 Aging Rates
5.5.3 Calibration Tolerance
5.5.4 G-Sensitivity
5.5.5 2-g Tip-Over Test
5.5.6 Holder Options
References
6 Oscillator Theory
6.1 Introduction
6.2 Feedback Oscillator Model
6.3 Negative-Resistance Model
6.4 Bode’s Gain Phase Method
6.5 Root Locus Method
6.6 The LC Tank Circuit
6.6.1 Component Quality Factors
6.6.2 The Basic Tank Circuit
6.7 Loaded Q
6.8 LC Resonators
6.9 LC Oscillators
6.10 Crystal Oscillator Topologies
6.11 Choosing a Topology
6.12 Load-Reactance Stability
6.13 How Crystals Oscillate and Control the Frequency: A Qualitative Discussion
6.13.1 How a Crystal Oscillator Starts Up
6.13.2 How the LLATOR Generates Negative Resistance
6.13.3 How an Oscillator Maintains Frequency Stability
References
7 Phase Noise and Jitter
7.1 Introduction
7.2 The Concept of Noise Density
7.2.1 The Gaussian (Normal) Distribution
7.2.2 Central-Limit Theorem
7.2.3 Power Spectral Density (PSD) Versus Probability Distribution (Density) Function (PDF)
7.3 The Noise Floor
7.4 Oscillator Phase Noise
7.4.1 Oscillator Frequency-Stability
7.4.2 Physical Meaning of Power Spectral Density (PSD)
7.4.3 Single-Sideband (SSB) Noise Spectrum
7.5 Power-Law Noise Processes
7.6 Deterministic Signals
7.7 Measuring Phase Noise on Spectrum Analyzer
7.8 Leeson’s Oscillator Noise Model
7.9 Oscillator Jitter
7.9.1 Random Jitter (RJ)
7.9.2 Deterministic Jitter (DJ)
7.9.3 Total Jitter (TJ)
7.9.4 Cycle-to-Cycle Jitter
7.9.5 Period Jitter
7.9.6 Phase Jitter
7.10 Units of Jitter
7.11 Measuring Jitter
7.12 Transforming Phase Noise to Phase Jitter
References
8 Specifying Crystal Oscillators
8.1 Introduction
8.2 Crystal Oscillator Types
8.3 Available Oscillator Output Waveforms
8.4 Output Structures of PECL, LVDS, CML, CMOS, and Clipped-Sinewave
8.4.1 Output Voltage Swings of LVPECL, LVDS, and CML
8.4.2 PECL Termination
8.4.3 LVDS Termination
8.4.4 CML Termination
8.4.5 TLL and CMOS Output Voltage Logic Levels
8.4.5 CMOS Termination
8.4.6 Clipped-Sinewave Termination
8.5 Specifying the Output Waveform
8.5.1 Specifying the Oscillator Output Waveform for the Lowest Noise Floor
8.6 Spread-Spectrum CLOCKs
8.7 Specifying CLOCK Oscillators
8.7.1 Specifying the CLOCK’s Frequency Accuracy
8.7.2 Specifying the CLOCK’s Phase Noise
8.7.3 Specifying the CLOCK’s Jitter
8.7.4 Specifying the CLOCK’s Symmetry (Duty Cycle)
8.7.5 Specifying the CLOCK’s Rise/Fall Times
8.7.6 Specifying a CLOCK’s Frequency Aging Rate
8.7.7 Specifying Harmonics
8.7.8 Specifying Subharmonic(s)
8.8 Specifying VCXOs
8.8.1 Specifying Frequency Deviation (Pullability)
8.8.2 Specifying APR
8.8.3 Specifying the VCXO Deviation Linearity
8.8.4 VCXO Transfer Gain (Kv)
8.8.5 Input Modulation Bandwidth of VCXO
8.9 Specifying TCXOs
8.9.1 Specifying a TCXO’s Frequency Aging Rate
8.10 Specifying OCXOs
8.10.1 Specifying the OCXO Maximum Operating Temperature
8.10.2 Specifying the OCXO Frequency-Temperature Stability
8.10.3 Specifying the OCXO Short-Term Stability
8.10.4 Specifying the OCXO Frequency Aging Rate
8.10.5 Specifying Warm-Up
8.11 The Bare Essentials Needed to Specify a Crystal CLOCK Oscillator
8.12 The Bare Essentials Needed to Specify a VCXO
8.13 The Bare Essentials Needed to Specify a TCXO
8.14 The Bare Essentials Needed to Specify a OCXO
References
9 Pierce-Gate Oscillator
9.1 Introduction
9.2 The Basic Pierce-Gate Oscillator
9.2.1 Feedback Resistor Rf
9.2.2 Resistor Rs
9.2.3 Inverter U1
9.2.4 Measuring the Inverter Transconductance and Output Conductance
9.2.5 How the PI Network Consisting of X1, C1, and C2 Provides the Necessary Phase Shift
9.3 Pierce-Gate Open-Loop Gain Phase Analysis
9.4 Determining the Sufficient Gain Margin of the Pierce-Gate Oscillator
9.5 Negative Resistance Versus the Crystal Shunt Capacitance
9.6 Pierce Gate for Third Overtone Mode Crystals
9.6.1 Pierce-Gate Inductorless Third Overtone Design
9.7 Pierce-Gate Start-Up Characteristics
9.8 Optimizing the Pierce Gate for High Loaded Q
9.9 Pierce-Gate VCXO Configuration
9.10 Measuring the Crystal Drive Level
9.11 Pierce-Gate CLOCK Design Example
References
10 Colpitts Oscillator
10.1 Introduction
10.2 Derivation of Gain Equation
10.3 Colpitts CC Quick Design Procedure Using a Fundamental-Mode, Parallel-Resonant Crystal
10.3.1 Selection of the Split Caps
10.3.2 Resistor Bias
10.3.3 Setting the Crystal to Frequency
10.3.4 Selecting a Transistor
10.4 Colpitts CC Quick Design Procedure Using a Third Overtone Parallel- or Series-Resonant Crystal {AU: Edits correct?}
10.4.1 Design of the Third Overtone Mode Selection
10.4.2 Setting a Parallel-Resonant Third Overtone Crystal to Frequency
10.4.3 Setting a Series-Resonant Third Overtone Crystal to Frequency
10.5 Transient Analysis of Colpitts CC
10.6 Colpitts VCXO Design
References
11 Butler Crystal Oscillator Design
11.1 Introduction
11.2 Butler’s Emitter Follower Oscillator Operation
11.3 Butler’s Emitter Follower Design Procedure
11.4 Butler’s Emitter Follower VCXO Design Example
11.5 Butler Gate Oscillator
References
12 Characterization of High-Performance Crystal Oscillators
12.1 Introduction
12.2 Why the Allan Variance?
12.3 Defining the Allan Variance
12.3.1 Defining the Allan Deviation
12.3.2 Tau-Sigma Plots
12.4 Modified Allan Variance
12.5 Overlapped Allan Variance
12.6 Defining Time Variance
12.6.1 Time Deviation Defined
12.7 Time-Interval Error
12.8 Frequency and Phase Data Collection Methods
12.8.1 Time Interval Counter Method of Data Capturing
12.8.2 Heterodyne Method of Data Capturing
12.8.3 Dual-Mixer Time-Difference Method of Data Capturing
12.9 Allan Variance Estimate from Frequency-Domain Measures
References
13 Frequency Multiplication Techniques
13.1 Introduction
13.2 The Effect on the Signal by Multiplying
13.3 PLL Multiplication
13.4 Step Recovery Diode (SRD) Multiplication
13.5 Nonlinear Transmission Line Multiplication
13.6 Direct Multiplication
13.7 Mixer Multiplication
13.8 Low Noise Schottky Diode Odd-Order Multiplier
13.9 Times Three Frequency Multiplier Design Example
References
14 Crystal Oscillator Requirements in Telecommunications
14.1 Introduction
14.2 Some Telecommunication Definitions
14.3 PLL Design Criteria in Telecommunications Networks
References
15 Testing Crystal Oscillators
15.1 Introduction
15.2 Military Standards
15.2.1 MIL-PRF-55310
15.2.2 MIL-PRF-38534
15.2.3 MIL-STD-810 “Environmental Engineering Considerations and Laboratory Tests”
15.2.4 MIL-STD-883 “Test Method Standard Microcircuits”
15.2.5 MIL-STD-202 “Test Methods for Electronic and Electrical Component Parts”
15.3 Organizations That Write Standards Other Than Military
15.4 Testing Crystal Oscillators
15.4.1 Equipment Required for the Testing Crystal Oscillators
15.4.2 Testing Frequency-Temperature Stability
15.5 Frequency Counters
15.6 Test Fixtures
References
Glossary
About the Author
Index
Understanding Quartz Crystals and Oscillators
For a complete listing of titles in the Artech House Microwave Library, turn to the back of this book.
Understanding Quartz Crystals and Oscillators Ramón M. Cerda
Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. Cover design by Igor Valdman ISBN 13: 978-1-60807-118-0 © 2014 ARTECH HOUSE 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. 10 9 8 7 6 5 4 3 2 1
To my kids, Cynthia, Ricardo, and Christian.
Contents 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Preface Acknowledgments Quartz Crystals Introduction Mother Nature Used Quartz First The Curie Brothers Piezoelectricity Quartz Left-Handed and Right-Handed Quartz Quartz Is Anisotropic A Timeline of Quartz Crystals and Oscillators Important Definitions Time Second Frequency 1.9 1.9.1 1.9.2 1.9.3 1.9.4 Nominal Frequency 1.9.5 Clock vii xxi xxiiI 1 1 2 3 3 4 5 5 6 7 7 7 8 8 9
分享到:
收藏