logo资料库

FLUENT6.3 User Guide.pdf

第1页 / 共2501页
第2页 / 共2501页
第3页 / 共2501页
第4页 / 共2501页
第5页 / 共2501页
第6页 / 共2501页
第7页 / 共2501页
第8页 / 共2501页
资料共2501页,剩余部分请下载后查看
FLUENT 6.3 User's Guide
Table of Contents
Preface
1 Starting and Executing FLUENT
1.1 Starting FLUENT
1.1.1 Single-Precision and Double-Precision Solvers
1.1.2 Starting FLUENT on a Linux/UNIX System
1.1.3 Starting FLUENT on a Windows System
1.1.4 Remote Simulation Facility (RSF)
1.1.5 Startup Options
1.2 Executing FLUENT Remotely
1.2.1 Overview and Limitations
1.2.2 Running FLUENT on a Remote Machine
1.2.3 Starting the Solver Manually on the Remote Machine
1.2.4 Executing Remotely by Reading a Case File
1.3 Running FLUENT in Batch Mode
1.3.1 Background Execution on Linux/UNIX Systems
1.3.2 Background Execution on Windows Systems
1.3.3 Batch Execution Options
1.4 Checkpointing a FLUENT Simulation
1.5 Cleaning Up Processes From a FLUENT Simulation
1.6 Exiting the Program
2 Graphical User Interface (GUI)
2.1 GUI Components
2.1.1 Console
2.1.2 Dialog Boxes
2.1.3 Panels
2.1.4 Graphics Display Windows
2.2 Customizing the Graphical User Interface (UNIX Systems Only)
2.3 Using the GUI Help System
2.3.1 Panel Help
2.3.2 Context-Sensitive Help (UNIX Only)
2.3.3 Opening the User's Guide Table of Contents
2.3.4 Opening the User's Guide Index
2.3.5 Opening the Reference Guide
2.3.6 Help on Help
2.3.7 Help for Text Interface Commands
2.3.8 Accessing the Other Manuals
2.3.9 Accessing the User Services Center Web Site
2.3.10 Accessing the Fluent Online Technical Support Web Site
2.3.11 Obtaining a Listing of Other FLUENT License Users
2.3.12 Version and Release Information
3 Text User Interface (TUI)
3.1 Text Menu System
3.1.1 Command Abbreviation
3.1.2 Command Line History
3.1.3 Scheme Evaluation
3.1.4 Aliases
3.2 Text Prompt System
3.2.1 Numbers
3.2.2 Booleans
3.2.3 Strings
3.2.4 Symbols
3.2.5 Filenames
3.2.6 Lists
3.2.7 Evaluation
3.2.8 Default Value Binding
3.3 Interrupts
3.4 System Commands
3.4.1 System Commands for UNIX-based Operating Systems
3.4.2 System Commands for Windows Operating Systems
3.5 Text Menu Input from Character Strings
3.6 Using the Text Interface Help System
4 Reading and Writing Files
4.1 Shortcuts for Reading and Writing Files
4.1.1 Default File Suffixes
4.1.2 Binary Files
4.1.3 Detecting File Format
4.1.4 Recent File List
4.1.5 Reading and Writing Compressed Files
4.1.6 Tilde Expansion (UNIX Systems Only)
4.1.7 Automatic Numbering of Files
4.1.8 Disabling the Overwrite Confirmation Prompt
4.2 Reading Mesh Files
4.2.1 Reading TGrid Mesh Files
4.2.2 Reading Surface Meshes
4.2.3 Reading GAMBIT and GeoMesh Mesh Files
4.2.4 Reading PreBFC Unstructured Mesh Files
4.3 Reading and Writing Case and Data Files
4.3.1 Reading and Writing Case Files
4.3.2 Reading and Writing Data Files
4.3.3 Reading and Writing Case and Data Files Together
4.3.4 Automatic Saving of Case and Data Files
4.4 Reading FLUENT/UNS and RAMPANT Case and Data Files
4.5 Reading and Writing Profile Files
4.6 Reading and Writing Boundary Conditions
4.7 Writing a Boundary Grid
4.8 Reading Scheme Source Files
4.9 Creating and Reading Journal Files
4.9.1 Procedure
4.10 Creating Transcript Files
4.11 Importing Files
4.11.1 ABAQUS Files
4.11.2 ANSYS Files
4.11.3 CFX Files
4.11.4 Meshes and Data in CGNS Format
4.11.5 EnSight Files
4.11.6 FIDAP Neutral Files
4.11.7 GAMBIT and GeoMesh Mesh Files
4.11.8 HYPERMESH ASCII Files
4.11.9 I-deas Universal Files
4.11.10 LSTC Files
4.11.11 Marc POST Files
4.11.12 NASTRAN Files
4.11.13 PATRAN Neutral Files
4.11.14 PLOT3D Files
4.11.15 PTC Mechanica Design Files
4.11.16 FLUENT 4 Case Files
4.11.17 PreBFC Files
4.11.18 Partition Files
4.11.19 CHEMKIN Mechanism
4.12 Exporting Files
4.12.1 Using the Export Panel
4.12.2 ABAQUS Files
4.12.3 ANSYS Files
4.12.4 ANSYS Input Files
4.12.5 ASCII Files
4.12.6 AVS Files
4.12.7 CGNS Files
4.12.8 Data Explorer Files
4.12.9 EnSight Case Gold Files
4.12.10 FAST Files
4.12.11 FAST Solution Files
4.12.12 Fieldview Unstructured Files
4.12.13 I-deas Universal Files
4.12.14 NASTRAN Files
4.12.15 PATRAN Files
4.12.16 RadTherm Files
4.12.17 Tecplot Files
4.12.18 Defining Transient Export Parameters
4.13 Grid-to-Grid Solution Interpolation
4.13.1 Performing Grid-to-Grid Solution Interpolation
4.13.2 Format of the Interpolation File
4.14 Saving Hardcopy Files
4.14.1 Using the Graphics Hardcopy Panel
4.15 Saving the Panel Layout
4.16 The .fluent File
5 Unit Systems
5.1 Restrictions on Units
5.2 Units in Grid Files
5.3 Built-In Unit Systems in FLUENT
5.4 Customizing Units
6 Reading and Manipulating Grids
6.1 Grid Topologies
6.1.1 Examples of Acceptable Grid Topologies
6.1.2 Face-Node Connectivity in FLUENT
6.1.3 Choosing the Appropriate Grid Type
6.2 Grid Requirements and Considerations
6.2.1 Geometry/Grid Requirements
6.2.2 Mesh Quality
6.3 Grid Import
6.3.1 GAMBIT Grid Files
6.3.2 GeoMesh Grid Files
6.3.3 TGrid Grid Files
6.3.4 PreBFC Grid Files
6.3.5 ICEMCFD Grid Files
6.3.6 I-deas Universal Files
6.3.7 NASTRAN Files
6.3.8 PATRAN Neutral Files
6.3.9 ANSYS Files
6.3.10 CFX Files
6.3.11 Using the fe2ram Filter to Convert Files
6.3.12 FLUENT/UNS and RAMPANT Case Files
6.3.13 FLUENT 4 Case Files
6.3.14 FIDAP Neutral Files
6.3.15 Reading Multiple Mesh/Case/Data Files
6.3.16 Reading Surface Mesh Files
6.4 Non-Conformal Grids
6.4.1 Non-Conformal Grid Calculations
6.4.2 Requirements and Limitations of Non-Conformal Grids
6.4.3 Using a Non-Conformal Grid in FLUENT
6.4.4 Starting From a FLUENT/UNS or RAMPANT Case
6.5 Checking the Grid
6.5.1 Grid Check Information
6.5.2 Repairing Duplicate Shadow Nodes
6.6 Reporting Grid Statistics
6.6.1 Grid Size
6.6.2 Memory Usage
6.6.3 Grid Zone Information
6.6.4 Partition Statistics
6.7 Converting the Grid to a Polyhedral Mesh
6.7.1 Converting the Domain to a Polyhedra
6.7.2 Converting Skewed Cells to Polyhedra
6.7.3 Steps in Converting Skewed Cells to Polyhedral Cells
6.8 Modifying the Grid
6.8.1 Merging Zones
6.8.2 Separating Zones
6.8.3 Fusing Face Zones
6.8.4 Creating Periodic Zones
6.8.5 Slitting Periodic Zones
6.8.6 Slitting Face Zones
6.8.7 Extruding Face Zones
6.8.8 Replacing, Deleting, Deactivating, and Activating Zones
6.8.9 Reordering the Domain and Zones
6.8.10 Scaling the Grid
6.8.11 Translating the Grid
6.8.12 Rotating the Grid
7 Boundary Conditions
7.1 Overview of Defining Boundary Conditions
7.1.1 Available Boundary Types
7.1.2 The Boundary Conditions Panel
7.1.3 Changing Boundary Zone Types
7.1.4 Setting Boundary Conditions
7.1.5 Copying Boundary Conditions
7.1.6 Selecting Boundary Zones in the Graphics Display
7.1.7 Changing Boundary Zone Names
7.1.8 Defining Non-Uniform Boundary Conditions
7.1.9 Defining Transient Boundary Conditions
7.1.10 Saving and Reusing Boundary Conditions
7.2 Flow Inlet and Exit Boundary Conditions
7.2.1 Using Flow Boundary Conditions
7.2.2 Determining Turbulence Parameters
7.3 Pressure Inlet Boundary Conditions
7.3.1 Inputs at Pressure Inlet Boundaries
7.3.2 Default Settings at Pressure Inlet Boundaries
7.3.3 Calculation Procedure at Pressure Inlet Boundaries
7.4 Velocity Inlet Boundary Conditions
7.4.1 Inputs at Velocity Inlet Boundaries
7.4.2 Default Settings at Velocity Inlet Boundaries
7.4.3 Calculation Procedure at Velocity Inlet Boundaries
7.5 Mass Flow Inlet Boundary Conditions
7.5.1 Inputs at Mass Flow Inlet Boundaries
7.5.2 Default Settings at Mass Flow Inlet Boundaries
7.5.3 Calculation Procedure at Mass Flow Inlet Boundaries
7.6 Inlet Vent Boundary Conditions
7.6.1 Inputs at Inlet Vent Boundaries
7.7 Intake Fan Boundary Conditions
7.7.1 Inputs at Intake Fan Boundaries
7.8 Pressure Outlet Boundary Conditions
7.8.1 Inputs at Pressure Outlet Boundaries
7.8.2 Default Settings at Pressure Outlet Boundaries
7.8.3 Calculation Procedure at Pressure Outlet Boundaries
7.8.4 Other Optional Inputs at Pressure Outlet Boundaries
7.9 Pressure Far-Field Boundary Conditions
7.9.1 Inputs at Pressure Far-Field Boundaries
7.9.2 Default Settings at Pressure Far-Field Boundaries
7.9.3 Calculation Procedure at Pressure Far-Field Boundaries
7.10 Outflow Boundary Conditions
7.10.1 FLUENT's Treatment at Outflow Boundaries
7.10.2 Using Outflow Boundaries
7.10.3 Mass Flow Split Boundary Conditions
7.10.4 Other Inputs at Outflow Boundaries
7.11 Outlet Vent Boundary Conditions
7.11.1 Inputs at Outlet Vent Boundaries
7.12 Exhaust Fan Boundary Conditions
7.12.1 Inputs at Exhaust Fan Boundaries
7.13 Wall Boundary Conditions
7.13.1 Inputs at Wall Boundaries
7.13.2 Default Settings at Wall Boundaries
7.13.3 Shear-Stress Calculation Procedure at Wall Boundaries
7.13.4 Heat Transfer Calculations at Wall Boundaries
2011-7-12
7.14 Symmetry Boundary Conditions
7.14.1 Examples of Symmetry Boundaries
7.14.2 Calculation Procedure at Symmetry Boundaries
7.15 Periodic Boundary Conditions
7.15.1 Examples of Periodic Boundaries
7.15.2 Inputs for Periodic Boundaries
7.15.3 Default Settings at Periodic Boundaries
7.15.4 Calculation Procedure at Periodic Boundaries
7.16 Axis Boundary Conditions
7.17 Fluid Conditions
7.17.1 Inputs for Fluid Zones
7.18 Solid Conditions
7.18.1 Inputs for Solid Zones
7.19 Porous Media Conditions
7.19.1 Limitations and Assumptions of the Porous Media Model
7.19.2 Momentum Equations for Porous Media
7.19.3 Treatment of the Energy Equation in Porous Media
7.19.4 Treatment of Turbulence in Porous Media
7.19.5 Effect of Porosity on Transient Scalar Equations
7.19.6 User Inputs for Porous Media
7.19.7 Modeling Porous Media Based on Physical Velocity
7.19.8 Solution Strategies for Porous Media
7.19.9 Postprocessing for Porous Media
7.20 Fan Boundary Conditions
7.20.1 Fan Equations
7.20.2 User Inputs for Fans
7.20.3 Postprocessing for Fans
7.21 Radiator Boundary Conditions
7.21.1 Radiator Equations
7.21.2 User Inputs for Radiators
7.21.3 Postprocessing for Radiators
7.22 Porous Jump Boundary Conditions
7.23 Non-Reflecting Boundary Conditions
7.23.1 Turbo-Specific Non-Reflecting Boundary Conditions
7.23.2 General Non-Reflecting Boundary Conditions
7.24 User-Defined Fan Model
7.24.1 Steps for Using the User-Defined Fan Model
7.24.2 Example of a User-Defined Fan
7.25 Heat Exchanger Models
7.25.1 Overview and Restrictions of the Heat Exchanger Models
7.25.2 Heat Exchanger Model Theory
7.25.3 Using the Heat Exchanger Model
7.25.4 Using the Heat Exchanger Group
7.25.5 Postprocessing for the Heat Exchanger Model
7.26 Boundary Profiles
7.26.1 Boundary Profile Specification Types
7.26.2 Boundary Profile File Format
7.26.3 Using Boundary Profiles
7.26.4 Reorienting Boundary Profiles
7.27 Fixing the Values of Variables
7.27.1 Overview of Fixing the Value of a Variable
7.27.2 Procedure for Fixing Values of Variables in a Zone
7.28 Defining Mass, Momentum, Energy, and Other Sources
7.28.1 Procedure for Defining Sources
7.29 Coupling Boundary Conditions with GT-Power
7.29.1 Requirements and Restrictions
7.29.2 User Inputs
7.30 Coupling Boundary Conditions with WAVE
7.30.1 Requirements and Restrictions
7.30.2 User Inputs
8 Physical Properties
8.1 Defining Materials
8.1.1 Material Types and Databases
8.1.2 Using the Materials Panel
8.1.3 Using a User-Defined Materials Database
8.2 Defining Properties Using Temperature-Dependent Functions
8.2.1 Inputs for Polynomial Functions
8.2.2 Inputs for Piecewise-Linear Functions
8.2.3 Inputs for Piecewise-Polynomial Functions
8.2.4 Checking and Modifying Existing Profiles
8.3 Density
8.3.1 Defining Density for Various Flow Regimes
8.3.2 Input of Constant Density
8.3.3 Inputs for the Boussinesq Approximation
8.3.4 Density as a Profile Function of Temperature
8.3.5 Incompressible Ideal Gas Law
8.3.6 Ideal Gas Law for Compressible Flows
8.3.7 Composition-Dependent Density for Multicomponent Mixtures
8.4 Viscosity
8.4.1 Input of Constant Viscosity
8.4.2 Viscosity as a Function of Temperature
8.4.3 Defining the Viscosity Using Kinetic Theory
8.4.4 Composition-Dependent Viscosity for Multicomponent Mixtures
8.4.5 Viscosity for Non-Newtonian Fluids
8.5 Thermal Conductivity
8.5.1 Constant Thermal Conductivity
8.5.2 Thermal Conductivity as a Function of Temperature
8.5.3 Thermal Conductivity Using Kinetic Theory
8.5.4 Composition-Dependent Thermal Conductivity for Multicomponent Mixtures
8.5.5 Anisotropic Thermal Conductivity for Solids
8.6 User-Defined Scalar (UDS) Diffusivity
8.6.1 Isotropic Diffusion
8.6.2 Anisotropic Diffusion
8.6.3 User-Defined Anisotropic Diffusivity
8.7 Specific Heat Capacity
8.7.1 Input of Constant Specific Heat Capacity
8.7.2 Specific Heat Capacity as a Function of Temperature
8.7.3 Defining Specific Heat Capacity Using Kinetic Theory
8.7.4 Specific Heat Capacity as a Function of Composition
8.8 Radiation Properties
8.8.1 Absorption Coefficient
8.8.2 Scattering Coefficient
8.8.3 Refractive Index
8.8.4 Reporting the Radiation Properties
8.9 Mass Diffusion Coefficients
8.9.1 Fickian Diffusion
8.9.2 Full Multicomponent Diffusion
8.9.3 Thermal Diffusion Coefficients
8.9.4 Mass Diffusion Coefficient Inputs
8.9.5 Mass Diffusion Coefficient Inputs for Turbulent Flow
8.10 Standard State Enthalpies
8.11 Standard State Entropies
8.12 Molecular Heat Transfer Coefficient
8.13 Kinetic Theory Parameters
8.14 Operating Pressure
8.14.1 The Effect of Numerical Roundoff on Pressure Calculation in Low-Mach-Number Flow
8.14.2 Operating Pressure, Gauge Pressure, and Absolute Pressure
8.14.3 Setting the Operating Pressure
8.15 Reference Pressure Location
8.15.1 Actual Reference Pressure Location
8.16 Real Gas Models
8.16.1 The NIST Real Gas Models
8.16.2 The User-Defined Real Gas Model
9 Modeling Basic Fluid Flow
9.1 Overview of Physical Models in FLUENT
9.2 Continuity and Momentum Equations
9.3 User-Defined Scalar (UDS) Transport Equations
9.3.1 Introduction
9.3.2 UDS Theory
9.3.3 Setting Up UDS Equations in FLUENT
9.4 Periodic Flows
9.4.1 Overview and Limitations
9.4.2 Theory
9.4.3 User Inputs for the Pressure-Based Solver
9.4.4 User Inputs for the Density-Based Solvers
9.4.5 Monitoring the Value of the Pressure Gradient
9.4.6 Postprocessing for Streamwise-Periodic Flows
9.5 Swirling and Rotating Flows
9.5.1 Overview of Swirling and Rotating Flows
9.5.2 Physics of Swirling and Rotating Flows
9.5.3 Turbulence Modeling in Swirling Flows
9.5.4 Grid Setup for Swirling and Rotating Flows
9.5.5 Modeling Axisymmetric Flows with Swirl or Rotation
9.6 Compressible Flows
9.6.1 When to Use the Compressible Flow Model
9.6.2 Physics of Compressible Flows
9.6.3 Modeling Inputs for Compressible Flows
9.6.4 Floating Operating Pressure
9.6.5 Solution Strategies for Compressible Flows
9.6.6 Reporting of Results for Compressible Flows
9.7 Inviscid Flows
9.7.1 Euler Equations
9.7.2 Setting Up an Inviscid Flow Model
9.7.3 Solution Strategies for Inviscid Flows
9.7.4 Postprocessing for Inviscid Flows
10 Modeling Flows with Rotating Reference Frames
10.1 Introduction
10.2 Flow in a Rotating Reference Frame
10.2.1 Overview
10.2.2 Equations for a Rotating Reference Frame
10.2.3 Single Rotating Reference Frame (SRF) Modeling
10.3 Flow in Multiple Rotating Reference Frames
10.3.1 The Multiple Reference Frame Model
10.3.2 The Mixing Plane Model
10.4 Grid Setup for a Single Rotating Reference Frame
10.5 Grid Setup for a Multiple Rotating Reference Frame
10.6 Steps in Using Rotating Reference Frames
10.7 Setting Up a Single Rotating Reference Frame Problem
10.7.1 Choosing the Relative or Absolute Velocity Formulation
10.8 Solution Strategies for a Single Rotating Reference Frame
10.8.1 Gradual Increase of the Rotational Speed to Improve Solution Stability
10.9 Postprocessing for a Single Rotating Reference Frame
10.10 Setting Up a Multiple Rotating Reference Frame Problem
10.10.1 Setting Up Multiple Reference Frames
10.10.2 Setting Up the Mixing Plane Model
10.11 Solution Strategies for MRF and Mixing Plane Problems
10.11.1 MRF Model
10.11.2 Mixing Plane Model
10.12 Postprocessing for MRF and Mixing Plane Problems
11 Modeling Flows Using Sliding and Deforming Meshes
11.1 Introduction
11.1.1 Conservation Equations
11.2 Sliding Mesh Theory
11.2.1 Overview
11.2.2 Sliding Mesh Concept
11.3 Dynamic Mesh Theory
11.3.1 Overview
11.3.2 Dynamic Mesh Update Methods
11.3.3 Volume Mesh Update Procedure
11.3.4 Solid-Body Kinematics
11.3.5 Steady-State Dynamic Mesh Applications
11.4 Steps in Using Sliding Meshes
11.4.1 Grid Requirements
11.4.2 Setting Up the Problem
11.5 Solution Strategies for Sliding Meshes
11.6 Postprocessing for Sliding Meshes
11.7 Steps in Using Dynamic Meshes
11.7.1 Setting Dynamic Mesh Modeling Parameters
11.7.2 Specifying the Motion of Dynamic Zones
11.7.3 Previewing the Dynamic Mesh
11.7.4 Defining Dynamic Mesh Events
11.7.5 Using the In-Cylinder Model
11.7.6 Using the 2.5D Model
11.7.7 Using the Six DOF Solver
12 Modeling Turbulence
12.1 Introduction
12.2 Choosing a Turbulence Model
12.2.1 Reynolds-Averaged Approach of the DES Model vs. LES
12.2.2 Reynolds (Ensemble) Averaging
12.2.3 Boussinesq Approach vs. Reynolds Stress Transport Models
12.2.4 Computational Effort: CPU Time and Solution Behavior
12.3 Spalart-Allmaras Model Theory
12.3.1 Overview
12.3.2 Transport Equation for the Spalart-Allmaras Model
12.3.3 Modeling the Turbulent Viscosity
12.3.4 Modeling the Turbulent Production
12.3.5 Modeling the Turbulent Destruction
12.3.6 Model Constants
12.3.7 Wall Boundary Conditions
12.3.8 Convective Heat and Mass Transfer Modeling
12.4 Standard, RNG, and Realizable k- Models Theory
12.4.1 Standard k- Model
12.4.2 RNG k- Model
12.4.3 Realizable k- Model
12.4.4 Modeling Turbulent Production in the k- Models
12.4.5 Effects of Buoyancy on Turbulence in the k- Models
12.4.6 Effects of Compressibility on Turbulence in the k- Models
12.4.7 Convective Heat and Mass Transfer Modeling in the k- Models
12.5 Standard and SST k- Models Theory
12.5.1 Standard k- Model
12.5.2 Shear-Stress Transport (SST) k- Model
12.5.3 Wall Boundary Conditions
12.6 The v2-f Model Theory
12.7 Reynolds Stress Model (RSM) Theory
12.7.1 Overview
12.7.2 Reynolds Stress Transport Equations
12.7.3 Modeling Turbulent Diffusive Transport
12.7.4 Modeling the Pressure-Strain Term
12.7.5 Effects of Buoyancy on Turbulence
12.7.6 Modeling the Turbulence Kinetic Energy
12.7.7 Modeling the Dissipation Rate
12.7.8 Modeling the Turbulent Viscosity
12.7.9 Wall Boundary Conditions
12.7.10 Convective Heat and Mass Transfer Modeling
12.8 Detached Eddy Simulation (DES) Model Theory
12.8.1 Spalart-Allmaras RANS Model
12.8.2 Realizable k- RANS Model
12.8.3 SST k- RANS Model
12.9 Large Eddy Simulation (LES) Model Theory
12.9.1 Overview
12.9.2 Filtered Navier-Stokes Equations
12.9.3 Subgrid-Scale Models
12.9.4 Inlet Boundary Conditions for the LES Model
12.10 Near-Wall Treatments for Wall-Bounded Turbulent Flows
12.10.1 Overview
12.10.2 Standard Wall Functions
12.10.3 Non-Equilibrium Wall Functions
12.10.4 Enhanced Wall Treatment
12.10.5 User-Defined Wall Functions
12.10.6 LES Near-Wall Treatment
12.11 Grid Considerations for Turbulent Flow Simulations
12.11.1 Near-Wall Mesh Guidelines
12.12 Steps in Using a Turbulence Model
12.13 Setting Up the Spalart-Allmaras Model
12.14 Setting Up the k- Model
12.14.1 Setting Up the Standard or Realizable k- Model
12.14.2 Setting Up the RNG k- Model
12.15 Setting Up the k- Model
12.15.1 Setting Up the Standard k- Model
12.15.2 Setting Up the Shear-Stress Transport k- Model
12.16 Setting Up the Reynolds Stress Model
12.17 Setting Up the Detached Eddy Simulation Model
12.18 Setting Up the Large Eddy Simulation Model
12.19 Setup Options for all Turbulence Modeling
12.19.1 Including the Viscous Heating Effects
12.19.2 Including Turbulence Generation Due to Buoyancy
12.19.3 Vorticity- and Strain/Vorticity-Based Production
12.19.4 Detached Eddy Simulation (DES) Modeling
12.19.5 Differential Viscosity Modification
12.19.6 Swirl Modification
12.19.7 Transitional Flows
12.19.8 Shear Flow Corrections
12.19.9 Including Pressure Gradient Effects
12.19.10 Including Thermal Effects
12.19.11 Including the Wall Reflection Term
12.19.12 Solving the k Equation to Obtain Wall Boundary Conditions
12.19.13 Quadratic Pressure-Strain Model
12.19.14 Low-Re Stress-Omega Pressure-Strain
12.19.15 Subgrid-Scale Model
12.19.16 Customizing the Turbulent Viscosity
12.19.17 Customizing the Turbulent Prandtl Numbers
12.19.18 Modeling Turbulence with Non-Newtonian Fluids
12.20 Defining Turbulence Boundary Conditions
12.20.1 The Spalart-Allmaras Model
12.20.2 k- Models and k- Models
12.20.3 Reynolds Stress Model
12.20.4 Large Eddy Simulation Model
12.21 Providing an Initial Guess for k and (or k and )
12.22 Solution Strategies for Turbulent Flow Simulations
12.22.1 Mesh Generation
12.22.2 Accuracy
12.22.3 Convergence
12.22.4 RSM-Specific Solution Strategies
12.22.5 LES-Specific Solution Strategies
12.23 Postprocessing for Turbulent Flows
12.23.1 Custom Field Functions for Turbulence
12.23.2 Postprocessing Turbulent Flow Statistics
12.23.3 Troubleshooting
13 Modeling Heat Transfer
13.1 Introduction
13.2 Modeling Conductive and Convective Heat Transfer
13.2.1 Heat Transfer Theory
13.2.2 Steps in Solving Heat Transfer Problems
13.2.3 Solution Strategies for Heat Transfer Modeling
13.2.4 Postprocessing Heat Transfer Quantities
13.2.5 Natural Convection and Buoyancy-Driven Flows
13.2.6 Shell Conduction Considerations
13.3 Modeling Radiation
13.3.1 Overview and Limitations
13.3.2 Radiative Transfer Equation
13.3.3 P-1 Radiation Model Theory
13.3.4 Rosseland Radiation Model Theory
13.3.5 Discrete Transfer Radiation Model (DTRM) Theory
13.3.6 Discrete Ordinates (DO) Radiation Model Theory
13.3.7 Surface-to-Surface (S2S) Radiation Model Theory
13.3.8 Radiation in Combusting Flows
13.3.9 Choosing a Radiation Model
13.3.10 Steps in Using the Radiation Models
13.3.11 Setting Up the DTRM Model
13.3.12 Setting Up the S2S Model
13.3.13 Setting Up the DO Model
13.3.14 Defining Material Properties for Radiation
13.3.15 Defining Boundary Conditions for Radiation
13.3.16 Solution Strategies for Radiation Modeling
13.3.17 Postprocessing Radiation Quantities
13.3.18 Solar Load Model
13.4 Modeling Periodic Heat Transfer
13.4.1 Overview and Limitations
13.4.2 Theory
13.4.3 Steps in Using Periodic Heat Transfer
13.4.4 Solution Strategies for Periodic Heat Transfer
13.4.5 Monitoring Convergence
13.4.6 Postprocessing for Periodic Heat Transfer
14 Modeling Species Transport and Finite-Rate Chemistry
14.1 Volumetric Reactions
14.1.1 Theory
14.1.2 Overview of User Inputs for Modeling Species Transport and Reactions
14.1.3 Enabling Species Transport and Reactions and Choosing the Mixture Material
14.1.4 Defining Properties for the Mixture and Its Constituent Species
14.1.5 Defining Boundary Conditions for Species
14.1.6 Defining Other Sources of Chemical Species
14.1.7 Solution Procedures for Chemical Mixing and Finite-Rate Chemistry
14.1.8 Postprocessing for Species Calculations
14.1.9 Importing a Volumetric Kinetic Mechanism in CHEMKIN Format
14.2 Wall Surface Reactions and Chemical Vapor Deposition
14.2.1 Overview of Surface Species and Wall Surface Reactions
14.2.2 Theory
14.2.3 User Inputs for Wall Surface Reactions
14.2.4 Solution Procedures for Wall Surface Reactions
14.2.5 Postprocessing for Surface Reactions
14.2.6 Importing a Surface Kinetic Mechanism in CHEMKIN Format
14.3 Particle Surface Reactions
14.3.1 Theory
14.3.2 User Inputs for Particle Surface Reactions
14.3.3 Using the Multiple Surface Reactions Model for Discrete-Phase Particle Combustion
14.4 Species Transport Without Reactions
15 Modeling Non-Premixed Combustion
15.1 Introduction
15.1.1 Overview of the Non-Premixed Approach
15.2 Non-Premixed Combustion and Mixture Fraction Theory
15.2.1 Mixture Fraction Theory
15.2.2 Modeling of Turbulence-Chemistry Interaction
15.2.3 Non-Adiabatic Extensions of the Non-Premixed Model
15.2.4 Chemistry Tabulation
15.2.5 Restrictions and Special Cases for Using the Non-Premixed Model
15.3 The Laminar Flamelet Models Theory
15.3.1 Restrictions and Assumptions
15.3.2 The Flamelet Concept
15.3.3 Flamelet Generation
15.3.4 Flamelet Import
15.4 The Steady Laminar Flamelet Model Theory
15.4.1 Overview
15.4.2 Multiple Steady Flamelet Libraries
15.4.3 Non-Adiabatic Steady Laminar Flamelets
15.5 The Unsteady Laminar Flamelet Model Theory
15.5.1 The Eulerian Unsteady Laminar Flamelet Model
15.5.2 The Diesel Unsteady Laminar Flamelet Model
15.6 Steps in Using the Non-Premixed Model
15.6.1 Preliminaries
15.6.2 Defining the Problem Type
15.6.3 Overview of the Problem Setup Procedure
15.7 Setting Up the Equilibrium Chemistry Model
15.7.1 Choosing Adiabatic or Non-Adiabatic Options
15.7.2 Specifying the Operating Pressure for the System
15.7.3 Enabling a Secondary Inlet Stream
15.7.4 Choosing to Define the Fuel Stream(s) Empirically
15.7.5 Enabling the Rich Flammability Limit (RFL) Option
15.8 Setting Up the Steady and Unsteady Laminar Flamelet Models
15.8.1 Choosing Adiabatic or Non-Adiabatic Options
15.8.2 Specifying the Operating Pressure for the System
15.8.3 Specifying a Chemical Mechanism File for Flamelet Generation
15.8.4 Importing a Flamelet
15.8.5 Using the Unsteady Laminar Flamelet Model
15.8.6 Using the Diesel Unsteady Laminar Flamelet Model
15.9 Defining the Stream Compositions
15.9.1 Setting Boundary Stream Species
15.9.2 Modifying the Database
15.9.3 Composition Inputs for Empirically-Defined Fuel Streams
15.9.4 Modeling Liquid Fuel Combustion Using the Non-Premixed Model
15.9.5 Modeling Coal Combustion Using the Non-Premixed Model
15.10 Setting Up Control Parameters
15.10.1 Forcing the Exclusion and Inclusion of Equilibrium Species
15.10.2 Defining the Flamelet Controls
15.10.3 Zeroing Species in the Initial Unsteady Flamelet
15.11 Calculating the Flamelets
15.11.1 Steady Flamelet
15.11.2 Unsteady Flamelet
15.11.3 Saving the Flamelet Data
15.11.4 Postprocessing the Flamelet Data
15.12 Calculating the Look-Up Tables
15.12.1 Stability Issues in Calculating Look-Up Tables
15.12.2 Saving the Look-Up Tables
15.12.3 Postprocessing the Look-Up Table Data
15.13 Defining Non-Premixed Boundary Conditions
15.13.1 Input of Mixture Fraction Boundary Conditions
15.13.2 Diffusion at Inlets
15.13.3 Input of Thermal Boundary Conditions and Fuel Inlet Velocities
15.14 Defining Non-Premixed Physical Properties
15.15 Coal Modeling Inputs in FLUENT
15.16 Solution Strategies for Non-Premixed Modeling
15.16.1 Single-Mixture-Fraction Approach
15.16.2 Two-Mixture-Fraction Approach
15.16.3 Starting a Non-Premixed Calculation From a Previous Case File
15.16.4 Solving the Flow Problem
15.17 Postprocessing the Non-Premixed Model Results
16 Modeling Premixed Combustion
16.1 Overview and Limitations
16.1.1 Overview
16.1.2 Limitations
16.2 Premixed Combustion Theory
16.2.1 Propagation of the Flame Front
16.2.2 Turbulent Flame Speed
16.2.3 Premixed Combustion Model Formulation in FLUENT
16.2.4 Calculation of Temperature
16.2.5 Calculation of Density
16.3 Using the Premixed Combustion Model
16.3.1 Enabling the Premixed Combustion Model
16.3.2 Choosing an Adiabatic or Non-Adiabatic Model
16.3.3 Modifying the Constants for the Premixed Combustion Model
16.3.4 Defining Physical Properties for the Unburnt Mixture
16.3.5 Setting Boundary Conditions for the Progress Variable
16.3.6 Initializing the Progress Variable
16.3.7 Postprocessing for Premixed Combustion Calculations
17 Modeling Partially Premixed Combustion
17.1 Overview and Limitations
17.1.1 Overview
17.1.2 Limitations
17.2 Theory
17.2.1 Calculation of Scalar Quantities
17.2.2 Laminar Flame Speed
17.3 Using the Partially Premixed Combustion Model
17.3.1 Setup and Solution Procedure
17.3.2 Modifying the Unburnt Mixture Property Polynomials
18 Modeling a Composition PDF Transport Problem
18.1 Overview and Limitations
18.2 Composition PDF Transport Theory
18.2.1 Solution of the PDF Transport Equation
18.2.2 Particle Convection
18.2.3 Particle Mixing
18.2.4 Particle Reaction
18.2.5 The ISAT Algorithm
18.3 Steps for Using the Composition PDF Transport Model
18.3.1 Enabling the Composition PDF Transport Model
18.3.2 Setting Integration Parameters
18.3.3 Enabling KINetics from Reaction Design
18.3.4 Enabling Liquid Micro-Mixing
18.3.5 Selecting the Particle Mixing Model
18.3.6 Defining the Solution Parameters
18.3.7 Monitoring the Solution
18.3.8 Monitoring ISAT
18.3.9 Using ISAT Efficiently
18.3.10 Reading and Writing ISAT Tables in Parallel
18.3.11 Running Unsteady Composition PDF Transport Simulations
18.3.12 Running Compressible Composition PDF Transport Simulations
18.3.13 Running Composition PDF Transport Simulations with Conjugate Heat Transfer
18.3.14 Postprocessing for Composition PDF Transport Calculations
19 Modeling Engine Ignition
19.1 Spark Model
19.1.1 Overview and Limitations
19.1.2 Spark Model Theory
19.1.3 Using the Spark Model
19.2 Autoignition Models
19.2.1 Overview and Limitations
19.2.2 Ignition Model Theory
19.2.3 Using the Autoignition Models
19.3 Crevice Model
19.3.1 Overview
19.3.2 Limitations
19.3.3 Crevice Model Theory
19.3.4 Using the Crevice Model
19.3.5 Crevice Model Solution Details
19.3.6 Postprocessing for the Crevice Model
20 Modeling Pollutant Formation
20.1 NOx Formation
20.1.1 Overview
20.1.2 Governing Equations for NOx Transport
20.1.3 Thermal NOx Formation
20.1.4 Prompt NOx Formation
20.1.5 Fuel NOx Formation
20.1.6 NOx Formation from Intermediate N2O
20.1.7 NOx Reduction by Reburning
20.1.8 NOx Reduction by SNCR
20.1.9 NOx Formation in Turbulent Flows
20.1.10 Using the NOx Model
20.1.11 Solution Strategies
20.1.12 Postprocessing
20.2 SOx Formation
20.2.1 Overview
20.2.2 Governing Equations for SOx Transport
20.2.3 Reaction Mechanisms for Sulfur Oxidation
20.2.4 SO2 and H2S Production in a Gaseous Fuel
20.2.5 SO2 and H2S Production in a Liquid Fuel
20.2.6 SO2 and H2S Production from Coal
20.2.7 SOx Formation in Turbulent Flows
20.2.8 Using the SOx Model
20.2.9 Solution Strategies
20.2.10 Postprocessing
20.3 Soot Formation
20.3.1 Overview and Limitations
20.3.2 Theory
20.3.3 Using the Soot Models
21 Predicting Aerodynamically Generated Noise
21.1 Overview
21.1.1 Direct Method
21.1.2 Integral Method Based on Acoustic Analogy
21.1.3 Broadband Noise Source Models
21.2 Acoustics Model Theory
21.2.1 The Ffowcs Williams and Hawkings Model
21.2.2 Broadband Noise Source Models
21.3 Using the Ffowcs Williams and Hawkings Acoustics Model
21.3.1 Enabling the FW-H Acoustics Model
21.3.2 Specifying Source Surfaces
21.3.3 Specifying Acoustic Receivers
21.3.4 Postprocessing the FW-H Acoustics Model Data
21.4 Using the Broadband Noise Source Models
21.4.1 Enabling the Broadband Noise Source Models
21.4.2 Postprocessing the Broadband Noise Source Model Data
22 Modeling Discrete Phase
22.1 Introduction
22.1.1 Overview
22.1.2 Limitations
22.2 Particle Motion Theory
22.2.1 Equations of Motion for Particles
22.2.2 Turbulent Dispersion of Particles
22.3 Multicomponent Particle Theory
22.4 Wall-Film Model Theory
22.4.1 Introduction
22.4.2 Interaction During Impact with a Boundary
22.4.3 Splashing
22.4.4 Separation Criteria
22.4.5 Conservation Equations for Wall-Film Particles
22.5 Particle Erosion and Accretion Theory
22.6 Dynamic Drag Model Theory
22.7 Spray Model Theory
22.7.1 Droplet Collision Model
22.7.2 Droplet Breakup Models
22.8 Atomizer Model Theory
22.8.1 The Plain-Orifice Atomizer Model
22.8.2 The Pressure-Swirl Atomizer Model
22.8.3 The Air-Blast/Air-Assist Atomizer Model
22.8.4 The Flat-Fan Atomizer Model
22.8.5 The Effervescent Atomizer Model
22.9 One-Way and Two-Way Coupling
22.9.1 Coupling Between the Discrete and Continuous Phases
22.9.2 Particle Types in FLUENT
22.10 Discrete Phase Model (DPM) Boundary Conditions
22.11 Steps for Using the Discrete Phase Models
22.11.1 Options for Interaction with the Continuous Phase
22.11.2 Steady/Transient Treatment of Particles
22.11.3 Parameter Tracking for the Discrete Phase Model
22.11.4 Alternate Drag Laws
22.11.5 Physical Models for the Discrete Phase Model
22.11.6 Options for Spray Modeling
22.11.7 Numerics of the Discrete Phase Model
22.11.8 User-Defined Functions
22.11.9 Parallel Processing for the Discrete Phase Model
22.12 Setting Initial Conditions for the Discrete Phase
22.12.1 Injection Types
22.12.2 Particle Types
22.12.3 Creating, Modifying, Copying, Deleting, and Listing Injections
22.12.4 Defining Injection Properties
22.12.5 Modeling Turbulent Dispersion of Particles
22.12.6 Custom Particle Laws
22.12.7 Defining Properties Common to More than One Injection
22.13 Setting Boundary Conditions for the Discrete Phase
22.13.1 Discrete Phase Boundary Condition Types
22.13.2 Setting Particle Erosion and Accretion Parameters
22.14 Setting Material Properties for the Discrete Phase
22.14.1 Summary of Property Inputs
22.14.2 Setting Discrete-Phase Physical Properties
22.15 Solution Strategies for the Discrete Phase
22.15.1 Integration of Particle Equation of Motion
22.15.2 Performing Trajectory Calculations
22.15.3 Resetting the Interphase Exchange Terms
22.16 Postprocessing for the Discrete Phase
22.16.1 Displaying of Trajectories
22.16.2 Reporting of Trajectory Fates
22.16.3 Step-by-Step Reporting of Trajectories
22.16.4 Reporting of Current Positions for Unsteady Tracking
22.16.5 Reporting of Interphase Exchange Terms and Discrete Phase Concentration
22.16.6 Sampling of Trajectories
22.16.7 Histogram Reporting of Samples
22.16.8 Summary Reporting of Current Particles
22.16.9 Postprocessing of Erosion/Accretion Rates
23 Modeling Multiphase Flows
23.1 Introduction
23.1.1 Multiphase Flow Regimes
23.1.2 Examples of Multiphase Systems
23.2 Choosing a General Multiphase Model
23.2.1 Approaches to Multiphase Modeling
23.2.2 Model Comparisons
23.2.3 Time Schemes in Multiphase Flow
23.2.4 Stability and Convergence
23.3 Volume of Fluid (VOF) Model Theory
23.3.1 Overview and Limitations of the VOF Model
23.3.2 Volume Fraction Equation
23.3.3 Material Properties
23.3.4 Momentum Equation
23.3.5 Energy Equation
23.3.6 Additional Scalar Equations
23.3.7 Time Dependence
23.3.8 Surface Tension and Wall Adhesion
23.3.9 Open Channel Flow
23.4 Mixture Model Theory
23.4.1 Overview and Limitations of the Mixture Model
23.4.2 Continuity Equation
23.4.3 Momentum Equation
23.4.4 Energy Equation
23.4.5 Relative (Slip) Velocity and the Drift Velocity
23.4.6 Volume Fraction Equation for the Secondary Phases
23.4.7 Granular Properties
23.4.8 Granular Temperature
23.4.9 Solids Pressure
23.5 Eulerian Model Theory
23.5.1 Overview and Limitations of the Eulerian Model
23.5.2 Volume Fractions
23.5.3 Conservation Equations
23.5.4 Interphase Exchange Coefficients
23.5.5 Solids Pressure
23.5.6 Maximum Packing Limit in Binary Mixtures
23.5.7 Solids Shear Stresses
23.5.8 Granular Temperature
23.5.9 Description of Heat Transfer
23.5.10 Turbulence Models
23.5.11 Solution Method in FLUENT
23.6 Wet Steam Model Theory
23.6.1 Overview and Limitations of the Wet Steam Model
23.6.2 Wet Steam Flow Equations
23.6.3 Phase Change Model
23.6.4 Built-in Thermodynamic Wet Steam Properties
23.7 Modeling Mass Transfer in Multiphase Flows
23.7.1 Source Terms due to Mass Transfer
23.7.2 Unidirectional Constant Rate Mass Transfer
23.7.3 UDF-Prescribed Mass Transfer
23.7.4 Cavitation Models
23.8 Modeling Species Transport in Multiphase Flows
23.8.1 Limitations
23.8.2 Mass and Momentum Transfer with Multiphase Species Transport
23.9 Steps for Using a Multiphase Model
23.9.1 Enabling the Multiphase Model
23.9.2 Solving a Homogeneous Multiphase Flow
23.9.3 Defining the Phases
23.9.4 Including Body Forces
23.9.5 Modeling Multiphase Species Transport
23.9.6 Specifying Heterogeneous Reactions
23.9.7 Including Mass Transfer Effects
23.9.8 Defining Multiphase Boundary Conditions
23.10 Setting Up the VOF Model
23.10.1 Choosing a VOF Formulation
23.10.2 Modeling Open Channel Flows
23.10.3 Defining the Phases for the VOF Model
23.10.4 Setting Time-Dependent Parameters for the VOF Model
23.10.5 Modeling Compressible Flows
23.10.6 Modeling Solidification/Melting
23.11 Setting Up the Mixture Model
23.11.1 Defining the Phases for the Mixture Model
23.11.2 Including Cavitation Effects
23.11.3 Modeling Compressible Flows
23.12 Setting Up the Eulerian Model
23.12.1 Additional Guidelines for Eulerian Multiphase Simulations
23.12.2 Defining the Phases for the Eulerian Model
23.12.3 Modeling Turbulence
23.12.4 Including Heat Transfer Effects
23.12.5 Modeling Compressible Flows
23.13 Setting Up the Wet Steam Model
23.13.1 Using User-Defined Thermodynamic Wet Steam Properties
23.13.2 Writing the User-Defined Wet Steam Property Functions (UDWSPF)
23.13.3 Compiling Your UDWSPF and Building a Shared Library File
23.13.4 Loading the UDWSPF Shared Library File
23.13.5 UDWSPF Example
23.14 Solution Strategies for Multiphase Modeling
23.14.1 Setting Initial Volume Fractions
23.14.2 VOF Model
23.14.3 Mixture Model
23.14.4 Eulerian Model
23.14.5 Wet Steam Model
23.15 Postprocessing for Multiphase Modeling
23.15.1 Model-Specific Variables
23.15.2 Displaying Velocity Vectors
23.15.3 Reporting Fluxes
23.15.4 Reporting Forces on Walls
23.15.5 Reporting Flow Rates
24 Modeling Solidification and Melting
24.1 Overview and Limitations of the Solidification/Melting Model
24.1.1 Overview
24.1.2 Limitations
24.2 Theory for the Solidification/Melting Model
24.2.1 Energy Equation
24.2.2 Momentum Equations
24.2.3 Turbulence Equations
24.2.4 Species Equations
24.2.5 Pull Velocity for Continuous Casting
24.2.6 Contact Resistance at Walls
24.3 Using the Solidification/Melting Model
24.3.1 Setup Procedure
24.3.2 Procedures for Modeling Continuous Casting
24.3.3 Solution Procedure
24.3.4 Postprocessing
25 Using the Solver
25.1 Overview of Flow Solvers
25.1.1 Pressure-Based Solver
25.1.2 Density-Based Solver
25.2 General Scalar Transport Equation: Discretization and Solution
25.2.1 Solving the Linear System
25.3 Discretization
25.3.1 Spatial Discretization
25.3.2 Temporal Discretization
25.3.3 Evaluation of Gradients and Derivatives
25.4 Pressure-Based Solver
25.4.1 Discretization of the Momentum Equation
25.4.2 Discretization of the Continuity Equation
25.4.3 Pressure-Velocity Coupling
25.4.4 Steady-State Iterative Algorithm
25.4.5 Time-Advancement Algorithm
25.5 Density-Based Solver
25.5.1 Governing Equations in Vector Form
25.5.2 Preconditioning
25.5.3 Convective Fluxes
25.5.4 Steady-State Flow Solution Methods
25.5.5 Unsteady Flows Solution Methods
25.6 Multigrid Method
25.6.1 Approach
25.6.2 Multigrid Cycles
25.6.3 Algebraic Multigrid (AMG)
25.6.4 Full-Approximation Storage (FAS) Multigrid
25.7 How to Use the Solver
25.7.1 Overview
25.8 Choosing the Discretization Scheme
25.8.1 First-Order Accuracy vs. Second-Order Accuracy
25.8.2 Other Discretization Schemes
25.8.3 Choosing the Pressure Interpolation Scheme
25.8.4 Choosing the Density Interpolation Scheme
25.8.5 User Inputs
25.9 Pressure-Based Solver Settings
25.9.1 Choosing the Pressure-Velocity Coupling Method
25.9.2 Setting Under-Relaxation Factors
25.9.3 Setting Solution Controls for the Non-Iterative Solver
25.10 Density-Based Solver Settings
25.10.1 Changing the Courant Number
25.10.2 Convective Flux Types
25.10.3 Turning On FAS Multigrid
25.11 Setting Algebraic Multigrid Parameters
25.11.1 Additional Algebraic Multigrid Parameters
25.11.2 Setting FAS Multigrid Parameters
25.12 Setting Solution Limits
25.13 Setting Multi-Stage Time-Stepping Parameters
25.14 Initializing the Solution
25.14.1 Initializing the Entire Flow Field
25.14.2 Patching Values in Selected Cells
25.15 Using Full Multigrid (FMG) Initialization
25.15.1 Overview of FMG Initialization
25.15.2 Steps in Using FMG Initialization
25.15.3 Convergence Strategies for FMG Initialization
25.16 Performing Steady-State Calculations
25.17 Performing Time-Dependent Calculations
25.17.1 User Inputs for Time-Dependent Problems
25.17.2 Adaptive Time Stepping
25.17.3 Variable Time Stepping
25.17.4 Postprocessing for Time-Dependent Problems
25.18 Monitoring Solution Convergence
25.18.1 Monitoring Residuals
25.18.2 Monitoring Statistics
25.18.3 Monitoring Forces and Moments
25.18.4 Monitoring Surface Integrals
25.18.5 Monitoring Volume Integrals
25.19 Executing Commands During the Calculation
25.19.1 Specifying the Commands to be Executed
25.19.2 Defining Macros
25.19.3 Saving Files During the Calculation
25.20 Additional Options in the Solver Menu
25.20.1 Animating the Solution
25.20.2 Importing and Exporting Particle History Data
25.20.3 Managing Acoustic Signal Data
25.21 Checking Your Case Setup
25.21.1 Checking the Grid
25.21.2 Checking Model Selections
25.21.3 Checking Boundary Conditions
25.21.4 Checking Material Properties
25.21.5 Checking the Solver Settings
25.22 Convergence and Stability
25.22.1 Judging Convergence
25.22.2 Step-by-Step Solution Processes
25.22.3 Modifying Algebraic Multigrid Parameters
25.22.4 Modifying the Multi-Stage Parameters
26 Adapting the Grid
26.1 Using Adaption
26.1.1 Adaption Example
26.1.2 Adaption Guidelines
26.2 Static Adaption Process
26.2.1 Hanging Node Adaption
26.2.2 Conformal Adaption
26.2.3 Conformal vs. Hanging Node Adaption
26.3 Boundary Adaption
26.3.1 Performing Boundary Adaption
26.4 Gradient Adaption
26.4.1 Gradient Adaption Approach
26.4.2 Performing Gradient Adaption
26.5 Dynamic Gradient Adaption
26.5.1 Dynamic Gradient Adaption Approach
26.6 Isovalue Adaption
26.6.1 Performing Isovalue Adaption
26.7 Region Adaption
26.7.1 Defining a Region
26.7.2 Region Adaption Example
26.7.3 Performing Region Adaption
26.8 Volume Adaption
26.8.1 Approach
26.8.2 Volume Adaption Example
26.8.3 Performing Volume Adaption
26.9 Yplus/Ystar Adaption
26.9.1 Approach
26.9.2 Performing Yplus or Ystar Adaption
26.10 Geometry-Based Adaption
26.10.1 Approach
26.10.2 Performing Geometry-Based Adaption
26.11 Registers
26.11.1 Manipulating Adaption Registers
26.11.2 Modifying Adaption Marks
26.11.3 Displaying Registers
26.11.4 Adapting to Registers
26.12 Grid Adaption Controls
26.13 Improving the Grid by Smoothing and Swapping
26.13.1 Smoothing
26.13.2 Face Swapping
26.13.3 Combining Skewness-Based Smoothing and Face Swapping
27 Creating Surfaces for Displaying and Reporting Data
27.1 Using Surfaces
27.2 Zone Surfaces
27.3 Partition Surfaces
27.4 Point Surfaces
27.4.1 Using the Point Tool
27.5 Line and Rake Surfaces
27.5.1 Using the Line Tool
27.6 Plane Surfaces
27.6.1 Using the Plane Tool
27.7 Quadric Surfaces
27.8 Isosurfaces
27.9 Clipping Surfaces
27.10 Transforming Surfaces
27.11 Grouping, Renaming, and Deleting Surfaces
28 Displaying Graphics
28.1 Basic Graphics Generation
28.1.1 Displaying the Grid
28.1.2 Displaying Contours and Profiles
28.1.3 Displaying Vectors
28.1.4 Displaying Pathlines
28.1.5 Displaying Results on a Sweep Surface
28.1.6 Hiding the Graphics Window Display
28.2 Customizing the Graphics Display
28.2.1 Overlay of Graphics
28.2.2 Opening Multiple Graphics Windows
28.2.3 Changing the Legend Display
28.2.4 Adding Text to the Graphics Window
28.2.5 Changing the Colormap
28.2.6 Adding Lights
28.2.7 Modifying the Rendering Options
28.3 Controlling the Mouse Button Functions
28.4 Modifying the View
28.4.1 Scaling, Centering, Rotating, Translating, and Zooming the Display
28.4.2 Controlling Perspective and Camera Parameters
28.4.3 Saving and Restoring Views
28.4.4 Mirroring and Periodic Repeats
28.5 Composing a Scene
28.5.1 Selecting the Object(s) to be Manipulated
28.5.2 Changing an Object's Display Properties
28.5.3 Transforming Geometric Objects in a Scene
28.5.4 Modifying Iso-Values
28.5.5 Modifying Pathline Attributes
28.5.6 Deleting an Object from the Scene
28.5.7 Adding a Bounding Frame
28.6 Animating Graphics
28.6.1 Creating an Animation
28.6.2 Playing an Animation
28.6.3 Saving an Animation
28.6.4 Reading an Animation File
28.6.5 Notes on Animation
28.7 Creating Videos
28.7.1 Recording Animations To Video
28.7.2 Equipment Required
28.7.3 Recording an Animation with FLUENT
28.8 Histogram and XY Plots
28.8.1 Plot Types
28.8.2 XY Plots of Solution Data
28.8.3 XY Plots of File Data
28.8.4 XY Plots of Circumferential Averages
28.8.5 XY Plot File Format
28.8.6 Residual Plots
28.8.7 Histograms
28.8.8 Modifying Axis Attributes
28.8.9 Modifying Curve Attributes
28.9 Turbomachinery Postprocessing
28.9.1 Defining the Turbomachinery Topology
28.9.2 Generating Reports of Turbomachinery Data
28.9.3 Displaying Turbomachinery Averaged Contours
28.9.4 Displaying Turbomachinery 2D Contours
28.9.5 Generating Averaged XY Plots of Turbomachinery Solution Data
28.9.6 Globally Setting the Turbomachinery Topology
28.9.7 Turbomachinery-Specific Variables
28.10 Fast Fourier Transform (FFT) Postprocessing
28.10.1 Limitations of the FFT Algorithm
28.10.2 Windowing
28.10.3 Fast Fourier Transform (FFT)
28.10.4 Using the FFT Utility
29 Reporting Alphanumeric Data
29.1 Reporting Conventions
29.2 Fluxes Through Boundaries
29.2.1 Generating a Flux Report
29.3 Forces on Boundaries
29.3.1 Computing Forces, Moments, and the Center of Pressure
29.3.2 Generating a Force, Moment, or Center of Pressure Report
29.4 Projected Surface Area Calculations
29.5 Surface Integration
29.5.1 Computing Surface Integrals
29.5.2 Generating a Surface Integral Report
29.6 Volume Integration
29.6.1 Computing Volume Integrals
29.6.2 Generating a Volume Integral Report
29.7 Histogram Reports
29.8 Discrete Phase
29.9 S2S Information
29.10 Reference Values
29.10.1 Setting Reference Values
29.10.2 Setting the Reference Zone
29.11 Summary Reports of Case Settings
29.11.1 Generating a Summary Report
30 Field Function Definitions
30.1 Node, Cell, and Facet Values
30.1.1 Cell Values
30.1.2 Node Values
30.1.3 Facet Values
30.2 Velocity Reporting Options
30.3 Field Variables Listed by Category
30.4 Alphabetical Listing of Field Variables and Their Definitions
30.5 Custom Field Functions
30.5.1 Creating a Custom Field Function
30.5.2 Manipulating, Saving, and Loading Custom Field Functions
30.5.3 Sample Custom Field Functions
31 Parallel Processing
31.1 Introduction to Parallel Processing
31.2 Starting Parallel FLUENT on a Windows System
31.2.1 Starting Parallel FLUENT on a Windows System Using Command Line Options
31.2.2 Starting Parallel FLUENT on a Windows System Using the Graphical User Interface
31.2.3 Starting Parallel FLUENT with the Fluent Launcher
31.2.4 Starting Parallel FLUENT with the Microsoft Job Scheduler (win64 Only)
31.3 Starting Parallel FLUENT on a Linux/UNIX System
31.3.1 Starting Parallel FLUENT on a Linux/UNIX System Using Command Line Options
31.3.2 Starting Parallel FLUENT on a Linux/UNIX System Using the Graphical User Interface
31.3.3 Setting Up Your Remote Shell and Secure Shell Clients
31.4 Checking Network Connectivity
31.5 Partitioning the Grid
31.5.1 Overview of Grid Partitioning
31.5.2 Preparing Hexcore Meshes for Partitioning
31.5.3 Partitioning the Grid Automatically
31.5.4 Partitioning the Grid Manually
31.5.5 Grid Partitioning Methods
31.5.6 Checking the Partitions
31.5.7 Load Distribution
31.6 Checking and Improving Parallel Performance
31.6.1 Checking Parallel Performance
31.6.2 Optimizing the Parallel Solver
A FLUENT Model Compatibility
A.1 FLUENT Model Compatibility Chart
B Case and Data File Formats
B.1 Guidelines
B.2 Formatting Conventions in Binary and Formatted Files
B.3 Grid Sections
B.3.1 Comment
B.3.2 Header
B.3.3 Dimensions
B.3.4 Nodes
B.3.5 Periodic Shadow Faces
B.3.6 Cells
B.3.7 Faces
B.3.8 Face Tree
B.3.9 Cell Tree
B.3.10 Interface Face Parents
B.4 Other (Non-Grid) Case Sections
B.4.1 Zone
B.4.2 Partitions
B.5 Data Sections
B.5.1 Grid Size
B.5.2 Data Field
B.5.3 Residuals
Nomenclature
Bibliography
Index
未标题
FLUENT 6.3 User’s Guide September 2006
Copyright c 2006 by Fluent Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without express written permission from Fluent Inc. Airpak, FIDAP, FLUENT, FLUENT for CATIA V5, FloWizard, GAMBIT, Icemax, Icepak, Icepro, Icewave, Icechip, MixSim, and POLYFLOW are registered trademarks of Fluent Inc. All other products or name brands are trademarks of their respective holders. CHEMKIN is a registered trademark of Reaction Design Inc. Portions of this program include material copyrighted by PathScale Corporation 2003-2004. Fluent Inc. Centerra Resource Park 10 Cavendish Court Lebanon, NH 03766
Contents Preface UTM-1 1 Starting and Executing FLUENT 1.1 Starting FLUENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Single-Precision and Double-Precision Solvers . . . . . . . . . . . 1.1.2 Starting FLUENT on a UNIX System . . . . . . . . . . . . . . . 1.1.3 Starting FLUENT on a Windows System . . . . . . . . . . . . . . 1.1.4 Remote Simulation Facility (RSF) . . . . . . . . . . . . . . . . . 1.1.5 Startup Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1-1 1-1 1-2 1-5 1-8 1-9 1.2 Executing FLUENT Remotely . . . . . . . . . . . . . . . . . . . . . . . . 1-13 1.2.1 Overview and Limitations . . . . . . . . . . . . . . . . . . . . . . 1-13 1.2.2 Running FLUENT on a Remote Machine . . . . . . . . . . . . . . 1-14 1.2.3 Starting the Solver Manually on the Remote Machine . . . . . . 1-15 1.2.4 Executing Remotely by Reading a Case File . . . . . . . . . . . . 1-15 1.3 Running FLUENT in Batch Mode . . . . . . . . . . . . . . . . . . . . . . 1-16 1.3.1 Background Execution on UNIX Systems . . . . . . . . . . . . . 1-16 1.3.2 Background Execution on Windows Systems . . . . . . . . . . . 1-18 1.3.3 Batch Execution Options . . . . . . . . . . . . . . . . . . . . . . 1-19 1.4 Checkpointing a FLUENT Simulation . . . . . . . . . . . . . . . . . . . . 1-20 1.5 Cleaning Up Processes From a FLUENT Simulation . . . . . . . . . . . . 1-21 1.6 Exiting the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22 c Fluent Inc. September 29, 2006 TOC-1
CONTENTS 2 Graphical User Interface (GUI) 2.1 GUI Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Dialog Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2-1 2-1 2-5 2.1.3 Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 2.1.4 Graphics Display Windows . . . . . . . . . . . . . . . . . . . . . 2-17 2.2 Customizing the Graphical User Interface (UNIX Systems Only) . . . . . 2-20 2.3 Using the GUI Help System . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 2.3.1 Panel Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 2.3.2 Context-Sensitive Help (UNIX Only) . . . . . . . . . . . . . . . . 2-23 2.3.3 Opening the User’s Guide Table of Contents . . . . . . . . . . . 2-23 2.3.4 Opening the User’s Guide Index . . . . . . . . . . . . . . . . . . 2-23 2.3.5 Opening the Reference Guide . . . . . . . . . . . . . . . . . . . . 2-23 2.3.6 Help on Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26 2.3.7 Help for Text Interface Commands . . . . . . . . . . . . . . . . . 2-26 2.3.8 Accessing the Other Manuals . . . . . . . . . . . . . . . . . . . . 2-26 2.3.9 Accessing the User Services Center Web Site . . . . . . . . . . . 2-28 2.3.10 Accessing the Fluent Online Technical Support Web Site . . . . . 2-28 2.3.11 Obtaining a Listing of Other FLUENT License Users . . . . . . . 2-28 2.3.12 Version and Release Information . . . . . . . . . . . . . . . . . . 2-28 3 Text User Interface (TUI) 3.1 Text Menu System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Command Abbreviation . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Command Line History . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 Scheme Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.4 Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3-1 3-3 3-4 3-4 3-5 TOC-2 c Fluent Inc. September 29, 2006
CONTENTS 3.2 Text Prompt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.5 Filenames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.6 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.8 Default Value Binding . . . . . . . . . . . . . . . . . . . . . . . . 3.3 3.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 System Commands for UNIX-based Operating Systems . . . . . 3-5 3-6 3-6 3-6 3-6 3-7 3-7 3-8 3-9 3-9 3-9 3-9 3.4.2 System Commands for Windows Operating Systems . . . . . . . 3-10 3.5 Text Menu Input from Character Strings . . . . . . . . . . . . . . . . . . 3-11 3.6 Using the Text Interface Help System . . . . . . . . . . . . . . . . . . . 3-12 4 Reading and Writing Files 4.1 Shortcuts for Reading and Writing Files . . . . . . . . . . . . . . . . . . 4.1.1 Default File Suffixes . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Binary Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 Detecting File Format . . . . . . . . . . . . . . . . . . . . . . . . 4.1.4 Recent File List . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 Reading and Writing Compressed Files . . . . . . . . . . . . . . 4.1.6 Tilde Expansion (UNIX Systems Only) . . . . . . . . . . . . . . 4.1.7 Automatic Numbering of Files . . . . . . . . . . . . . . . . . . . 4.1.8 Disabling the Overwrite Confirmation Prompt . . . . . . . . . . 4-1 4-2 4-2 4-3 4-3 4-4 4-4 4-6 4-6 4-7 c Fluent Inc. September 29, 2006 TOC-3
CONTENTS 4.2 Reading Mesh Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Reading TGrid Mesh Files . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Reading Surface Meshes . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Reading GAMBIT and GeoMesh Mesh Files . . . . . . . . . . . . 4.2.4 Reading PreBFC Unstructured Mesh Files . . . . . . . . . . . . . 4.3 Reading and Writing Case and Data Files . . . . . . . . . . . . . . . . . 4.3.1 Reading and Writing Case Files . . . . . . . . . . . . . . . . . . 4-7 4-8 4-8 4-8 4-8 4-9 4-9 4.3.2 Reading and Writing Data Files . . . . . . . . . . . . . . . . . . 4-10 4.3.3 Reading and Writing Case and Data Files Together . . . . . . . 4-10 4.3.4 Automatic Saving of Case and Data Files . . . . . . . . . . . . . 4-11 4.4 Reading FLUENT/UNS and RAMPANT Case and Data Files . . . . . . . 4-13 4.5 Reading and Writing Profile Files . . . . . . . . . . . . . . . . . . . . . . 4-14 4.6 Reading and Writing Boundary Conditions . . . . . . . . . . . . . . . . 4-15 4.7 Writing a Boundary Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 4.8 Reading Scheme Source Files . . . . . . . . . . . . . . . . . . . . . . . . 4-17 4.9 Creating and Reading Journal Files . . . . . . . . . . . . . . . . . . . . . 4-17 4.9.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 4.10 Creating Transcript Files . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19 4.11 Importing Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20 4.11.1 ABAQUS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 4.11.2 ANSYS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 4.11.3 Meshes and Data in CGNS Format . . . . . . . . . . . . . . . . . 4-23 4.11.4 EnSight Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 4.11.5 FIDAP Neutral Files . . . . . . . . . . . . . . . . . . . . . . . . . 4-24 4.11.6 GAMBIT and GeoMesh Mesh Files . . . . . . . . . . . . . . . . . 4-24 4.11.7 HYPERMESH ASCII Files . . . . . . . . . . . . . . . . . . . . . . 4-24 4.11.8 I-deas Universal Files . . . . . . . . . . . . . . . . . . . . . . . . . 4-24 4.11.9 LSTC Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25 4.11.10 Marc POST Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25 TOC-4 c Fluent Inc. September 29, 2006
CONTENTS 4.11.11 NASTRAN Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26 4.11.12 PATRAN Neutral Files . . . . . . . . . . . . . . . . . . . . . . . . 4-26 4.11.13 PLOT3D Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27 4.11.14 PTC Mechanica Design Files . . . . . . . . . . . . . . . . . . . . . 4-27 4.11.15 FLUENT 4 Case Files . . . . . . . . . . . . . . . . . . . . . . . . 4-27 4.11.16 PreBFC Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 4.11.17 Partition Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 4.11.18 CHEMKIN Mechanism . . . . . . . . . . . . . . . . . . . . . . . 4-28 4.12 Exporting Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29 4.12.1 Using the Export Panel . . . . . . . . . . . . . . . . . . . . . . . 4-31 4.12.2 ABAQUS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 4.12.3 ANSYS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33 4.12.4 ANSYS Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34 4.12.5 ASCII Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34 4.12.6 AVS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35 4.12.7 CGNS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-35 4.12.8 Data Explorer Files . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36 4.12.9 EnSight Case Gold Files . . . . . . . . . . . . . . . . . . . . . . . 4-36 4.12.10 FAST Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38 4.12.11 FAST Solution Files . . . . . . . . . . . . . . . . . . . . . . . . . 4-38 4.12.12 Fieldview Unstructured Files . . . . . . . . . . . . . . . . . . . . . 4-38 4.12.13 I-deas Universal Files . . . . . . . . . . . . . . . . . . . . . . . . . 4-39 4.12.14 NASTRAN Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40 4.12.15 PATRAN Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41 4.12.16 RadTherm Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41 4.12.17 Tecplot Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42 4.12.18 Defining Transient Export Parameters . . . . . . . . . . . . . . . 4-43 c Fluent Inc. September 29, 2006 TOC-5
CONTENTS 4.13 Grid-to-Grid Solution Interpolation . . . . . . . . . . . . . . . . . . . . . 4-44 4.13.1 Performing Grid-to-Grid Solution Interpolation . . . . . . . . . . 4-44 4.13.2 Format of the Interpolation File . . . . . . . . . . . . . . . . . . 4-46 4.14 Saving Hardcopy Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-46 4.14.1 Using the Graphics Hardcopy Panel . . . . . . . . . . . . . . . . . 4-47 4.15 Saving the Panel Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52 4.16 The .fluent File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52 5 Unit Systems 5.1 Restrictions on Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Units in Grid Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Built-In Unit Systems in FLUENT . . . . . . . . . . . . . . . . . . . . . . 5.4 Customizing Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Reading and Manipulating Grids 6.1 Grid Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Examples of Acceptable Grid Topologies . . . . . . . . . . . . . . 5-1 5-2 5-2 5-3 5-4 6-1 6-2 6-2 6.1.2 Face-Node Connectivity in FLUENT . . . . . . . . . . . . . . . . 6-11 6.1.3 Choosing the Appropriate Grid Type . . . . . . . . . . . . . . . 6-17 6.2 Grid Requirements and Considerations . . . . . . . . . . . . . . . . . . . 6-19 6.2.1 Geometry/Grid Requirements . . . . . . . . . . . . . . . . . . . 6-19 6.2.2 Mesh Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 6.3 Grid Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 6.3.1 GAMBIT Grid Files . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 6.3.2 GeoMesh Grid Files . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 6.3.3 TGrid Grid Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 6.3.4 PreBFC Grid Files . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25 6.3.5 ICEMCFD Grid Files . . . . . . . . . . . . . . . . . . . . . . . . . 6-26 6.3.6 Grid Files from Third-Party CAD Packages . . . . . . . . . . . . 6-26 6.3.7 FLUENT/UNS and RAMPANT Case Files . . . . . . . . . . . . . 6-32 TOC-6 c Fluent Inc. September 29, 2006
分享到:
收藏