logo资料库

基于单片机与模糊PID控制的热水器温度智能控制设计.pdf

第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
资料共3页,全文预览结束
基于单片机与模糊PID控制的热水器温度智能控制设计 基于单片机与模糊 控制的热水器温度智能控制设计 温度是工业生产过程中重要的物理量,尤其在冶金、机械、食品、化工等工业中,对工件的处理温度都要求严 格控制,对温度的精确度和稳定性均有较高要求,温度的测量与控制直接关系到企业的生产利益甚至存亡。本文 讨论基于单片机与模糊PID控制的热水器温度智能控制设计 目前在国内外很多温度控制系统都采用ARM 作为处理器,PID 作为温度控制方式[1]。该控制方式对大多数控制对象均可达到 满意的控制效果,但对于有特殊要求或具有复杂对象特性的系统,采用数字PID控制一般难以达到目的。基于温度变化的非线 性与模糊控制鲁棒性强、干扰和参数变化对控制效果的影响较小,尤其适合于非线性、时变及纯滞后系统的控制,将PID与模 糊控制相结合来实现对温度的控制。 因此,本文以热水器为对象,运用系统控制理论,以模糊控制与数字PID控制相结合方式进行温度控制系统的设计。 1 整体方案设计 系统采用晶控电子的STC系列单片机进行下位机温度控制,同时采用PC机进行上位机控制。上位机首先给下位机发出命令, 下位机再根据此命令解释成相应时序信号直接控制相应设备。下位机不时读取设备状态数据,转化成数字信号反馈给上位机。 下位机实现现场实时控制,上位机实现远程实时监控。 系统的实现采用模块化设计思想,分别从硬件、软件来设计并综合应用。硬件分为温度检测模块、输入输出模块、串口通信模 块及加热模块几个部分;软件由上下位机同时控制,包括温度采集子程序、液晶显示子程序、键盘输入子程序、模糊PID控制子 程序、串口通信子程序等。设计主要针对控制算法来实现,系统总体设计方案如图1所示。 2 硬件电路设计 2.1温度检测模块 DS18B20是DALLAS公司生产的数字温度传感器,温度测量范围为-55℃~+125℃,测温分辨率可达0.062 5 ℃,它集温度测量 与A/D转换于一体,直接输出数字量,传输距离远,可以实现多点检测,硬件结构简单,避免了传统热电偶、热电阻模拟信号 到数字信号转换、硬件结构复杂、成本高的缺点,其电路连接如图2所示。 2.2 串口通信模块 接口RS232是用正负电压来表示逻辑状态的,而单片机采用正逻辑TTL电平,因此必须在此分立元件实现电平和逻辑关系的变 换。通信电路中,下位机串口使用查询法接收和发送资料,上位机发出指定字符,下位机收到后返回给上位机原字符,其电路 连接如图3所示。
2.4 加热模块 系统的加热过程通过单片机控制继电器的开关来实现,当检测温度与设定温度有差距时继电器处于接通状态,加热器持续加 热,当检测温度与设定温度一致时,继电器处于断开状态,加热器停止加热。继电器电路连接如图5所示[2]。 3 软件设计 3.1模糊PID控制算法 模糊PID控制是找出Kp、Ki、Kd与E、Ec之间的模糊关系,通过不断检测E和Ec,根据模糊推理对Kp、Ki、Kd进行在线修 改,满足了不断变化的E、Ec对控制参数的要求,从而使被控对象具有良好的动、静态性能。模糊PID结构图如图6所示。模 糊PID控制器的调整规则是[3]: (1)当E较大时,为加快系统响应速度,应取较大的Kp和较小的Kd,由于积分太强会使系统超调加大,因而要对积分作用加以 限制,通常取Ki=0或者较小值; (2)当E和Ec中等大小时,为减少系统超调并保证一定的响应速度,Kp应适当取小些,同时Kd的取值对系统影响很大,也应取 小些,Ki的取值要适当;
(3)当E较小时,为减小稳态误差,Kp与Ki应取得大些,而Kd的取值要适当,取值不当会引起系统震荡。其原则是:当Ec较小 时,Kd取大些,当Ec较大时,Kd取较小的值,通常Kd为中等大小。 3.2 下位机程序流程图 下位机采用keil软件,C语言进行程序的编写,采用STC-ISP进行软件烧写,程序流程图如图7所示。 3.3 上位机界面显示 上位机采用VB6.0对温度监控界面进行编写,通过界面可以选择不同的串口进行通信,在不同时间可以通过多个温度检测器对 不同热水器进行温度检测并自行设定温度,界面可以实时显示温度变化曲线如图9所示。 本系统将单片机与模糊PID控制相结合,不仅单片机控制效果显著而且易于操作,还实现了智能控制与常规PID控制两者的优 点:它具备自学习、自适应、自组织的能力,能够自动识别被控过程参数,自动整定控制参数,能够适应被控过程参数的变 化;它又具备常规PID控制器结构简单、鲁棒性强、可靠性高、为现场设计人员所熟悉等特点,较易应用与推广。
分享到:
收藏