1.1
. (),
, , (experiment).
, , Ω . Ω
, ω . Ω ,
A, B, C , Ω ,
A,B,F .
Ω ,
, Æ σ
1.1.1 F Ω ,
(1) A ∈ F , AC ∈ F , AC A , AC = ¯A = Ω −A;
(2) An ∈ F , n ∈ N,
An ∈ F .
∞
F σ (σ ), (Ω ,F ) .
n=1
, F σ , F "##
$, F % #& F . : F0 =
{∅, Ω}, F1 = {∅, A, AC , Ω} Æ F2 = {A∀A ⊂ Ω} σ , ’
A = {∅, A, Ω} σ .
$ $! σ . A Ω
. A σ , σ(A), σ(A)
A " σ , A $! σ . :A = {∅, A, Ω},
σ(A) = {∅, A, AC , Ω}. +(Borel)σ : R
1
2
% (−∞, a] $! σ + σ , B,
B = σ((−∞, a],∀a ∈ R).
1.1.2 (Ω ,F ) -, P F
, :
(/)
(1) P (A) 0,∀A ∈ F ;
(2) P (Ω ) = 1;
(3) Ai ∈ F , i = 1, 2,· · · , AiAj = ∅,∀ i = j,
∞
∞
()
P
Ai
=
P (Ai).
()
i=1
i=1
P - (Ω ,F ) %(probability measure),
(probability). (Ω ,F , P ) (probability space),
F &. A ∈ F , A (random event),
, P (A) & A .
&!&’!. %
(:
(1) P (∅) = 0, P (AC) = 1 − P (A).
(2) A1, A2,· · · , An ),
n
n
P
Ai
=
P (Ai).
i=1
i=1
()
(3) & A Æ B,
B) = P (A) + P (B) − P (AB),
P (A − B) = P (A) − P (AB).
P (A
(4) A ⊂ B, P (A) P (B).
1.1
3
P
Ai
=
i=1
n
(5) (2 (Jordan) 3*) A1, A2,· · · , An
n
P (Ai) −
n
P (AiAj) +
n
· · · + (−1)n+1P (A1A2 · · · An).
1i