logo资料库

动态规划原版论文.pdf

第1页 / 共93页
第2页 / 共93页
第3页 / 共93页
第4页 / 共93页
第5页 / 共93页
第6页 / 共93页
第7页 / 共93页
第8页 / 共93页
资料共93页,剩余部分请下载后查看
Static and dynamic job-shop scheduling using rolling- horizon approaches and the Shifting Bottleneck Procedure By Ahmed S. Ghoniem Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of Master of Science In Joint graduate program with Ecole des Mines de Nantes - France Industrial and Systems Engineering within the Dr. Subhash C. Sarin, Chairman – co-advisor Dr. Stéphane Dauzère-Pérès, Co-advisor EMNantes Dr. Hanif D. Sherali, Committee Member Dr. Robert C. Williges, Program Chairman September 2002 Nantes, France Keywords: job-shop scheduling, rolling horizon approach, decomposition methods, shifting bottleneck procedure, static/dynamic scheduling. © 2002, Ahmed Ghoniem
Static and dynamic job-shop scheduling using rolling-horizon approaches and the Shifting Bottleneck Procedure by Ahmed Ghoniem Abstract Over the last decade, the semiconductor industry has witnessed a steady increase in its complexity based on improvements in manufacturing processes and equipment. Progress in the technology used is no longer the key to success, however. In fact, the semiconductor technology has reached such a high level of complexity that improvements appear at a slow pace. Moreover, the diffusion of technology among competitors shows that traditional approaches based on technological advances and innovations are not sufficient to remain competitive. A recent crisis in the semiconductor field in the summer 2001 made it even clearer that optimizing the operational control of semiconductor wafer fabrication facilities is a vital key to success. Operating research-oriented studies have been carried out to this end for the last 5 years. None of them, however, suggest a comprehensive model and solution to the operational control problem of a semiconductor manufacturing facility. Two main approaches, namely mathematical programming and dispatching rules, have been explored in the literature so far, either partially or entirely dealing with this problem. Adapting the Shifting Bottleneck (SB) procedure is a third approach that has motivated many studies. Most research focuses on optimizing a certain objective function under idealized conditions and thus does not take into consideration system disruptions such as machine breakdown. While many papers address the adaptations of the SB procedure, the problem of re-scheduling jobs dynamically to take disruptions and local disturbances (machines breakdown, maintenance...) into consideration shows interesting perspectives for research. Dealing with local disturbances in a production environment and analyzing their impact on
scheduling policies is a complex issue. It becomes even more complex in the semiconductor industry because of the numerous inherent constraints to take into account. The problem that is addressed in this thesis consists of studying dynamic scheduling in a job-shop environment where local disturbances occur. This research focuses on scheduling a large job shop and developing re-scheduling policies when local disturbances occur. The re-scheduling can be applied to the whole production horizon considered in the instance, or applied to a restricted period T that becomes a decision variable of the problem. The length of the restricted horizon T of re-scheduling can influence significantly the overall results. Its impact on the general performance is studied. Future extensions can be made to include constraints that arise in the semiconductors industry, such as the presence of parallel and batching machines, reentrant flows and the lot dedication problem. The theoretical results developed through this research will be applied to data sets to study their efficiency. We hope this methodology will bring useful insights to dealing effectively with local disturbances in production environments.
Dedication I would like to dedicate this thesis to my parents. iv
Acknowledgments In the first place, I would like to express my gratitude towards Dr. Stéphane Dauzère-Pérès and Dr. Subhash Sarin for giving me the opportunity of working under their guidance. Their support and trust helped me in developing my own ideas and implementing them successfully. Dr. Stéphane Dauzère-Pérès helped me in carrying out my research for the Master’s Thesis under ideal conditions in the Department of Automatic Control and Industrial Engineering at the Ecole des Mines de Nantes (France). I would like to thank heartily Dr. Hanif Sherali who kindly accepted to serve in my committee. I appreciate much the support he gave me during my stay in Blacksburg (Spring 2001) and after I came back to France. From February 2002 to September 2002, Fabrice Delmotte was my office mate in the Department of Automatic Control and Industrial Engineering at the Ecole des Mines de Nantes (France). I appreciated sharing the office with him and the friendly discussions we had together. In addition, I would like to thank all the professors who contributed to the creation of this dual MS degree between Virginia Tech and the Ecole des Mines de Nantes. I am glad to be a pioneer of this promising program. Finally, all my gratitude goes to my parents for what they did and do for our family and me. v
Table of Contents ABSTRACT ............................................................................................................................. B DEDICATION........................................................................................................................IV ACKNOWLEDGMENTS ...................................................................................................... V 1. BACKGROUND................................................................................................................... 1 A. INTRODUCTION TO THE PROBLEM....................................................................................... 1 1. The Semiconductor Industry....................................................................................... 1 2. Specific constraints .................................................................................................... 2 3. Dynamic behaviour .................................................................................................... 3 B. PROBLEM DEFINITION ..................................................................................................... 4 1. Preliminary note......................................................................................................... 5 2. Phase 1: Scheduling phase......................................................................................... 6 3. Phase 2: Rescheduling phase..................................................................................... 8 C. RESEARCH GOALS ............................................................................................................ 12 1. Research Questions.................................................................................................. 12 2. Problem Hypotheses................................................................................................. 12 3. Research Objectives ................................................................................................. 13 4. Significance of Proposed Research.......................................................................... 13 2. LITERATURE REVIEW.................................................................................................. 15 A. SEMICONDUCTOR MANUFACTURING ................................................................................ 15 B. SHIFTING BOTTLENECK PROCEDURE ................................................................................ 15 C. REACTIVE SCHEDULING.................................................................................................... 16 3. METHODOLOGY............................................................................................................. 23 A. DISJUNCTIVE GRAPH...................................................................................................... 23 B. THE SHIFTING BOTTLENECK PROCEDURE ..................................................................... 24 C. THE ROLLING HORIZON APPROACH................................................................................ 26 1. Overview.................................................................................................................... 26 2. Optimization of each time window............................................................................ 27 3. Assignment of operations to time windows ............................................................... 27 D. PROPOSED APPROACH AND METHODOLOGY .................................................................... 28 4. RESULTS............................................................................................................................ 29 A. PHASE 1: SCHEDULING WITH R.H. HEURISTICS ................................................................ 29 1. The General Scheme................................................................................................. 29 2. An example ............................................................................................................... 30 3. Number of time-windows.......................................................................................... 35 4. Improved Decomposition Heuristic (IDH)............................................................... 41 5. Some Results............................................................................................................. 43 B. PHASE 2: RE-SCHEDULING PHASE .................................................................................... 46 1. Introduction.............................................................................................................. 46 2. Notations and hypothesis ......................................................................................... 47 3. General Scheme........................................................................................................ 48 4. An example ............................................................................................................... 50 5. Length of R.H. ........................................................................................................... 54 CONCLUSION....................................................................................................................... 58 vi
APPENDIX: ELEMENTS OF CODE IMPLEMENTED IN JAVA LANGUAGE......... 59 BIBLIOGRAPHY .................................................................................................................. 81 VITA........................................................................................................................................ 85 vii
Table of Figures Figure 1 - A Disjunctive Graph.................................................................................................. 6 Figure 2 - Disjunctive graph with time windows....................................................................... 7 Figure 3 - Disjunctive Graph with time windows in the event of a system disruption.............. 9 Figure 4 - Disjunctive Graph and the re-scheduling phase ...................................................... 11 Figure 5 - A Disjunctive Graph................................................................................................ 24 Figure 6 - Rolling Horizon Heuristic on a single machine ...................................................... 26 Figure 7 – Decomposition Heuristic general scheme............................................................... 30 Figure 8 - Overall graph for a 4x4 instance ............................................................................. 31 Figure 9 - Graph corresponding to the 1st time-window ......................................................... 31 Figure 10 - Gantt Diagram for the first time window of the problem...................................... 32 Figure 11 - Graph associated to the second time window........................................................ 33 Figure 12 - Gantt diagram showing an overlapping................................................................. 33 Figure 13 - Gantt Diagram for the Decomposition Heuristic................................................... 34 Figure 14 - Impact of the number of subwindows; 5x10 and 5x15 problems ......................... 35 Figure 15 - Impact of the number of subwindows; 5x20 problems ......................................... 36 Figure 16 - Impact of the number of subwindows; 10x10 problems ....................................... 36 Figure 17 - la-09 instance......................................................................................................... 37 Figure 18 - la-15 instance......................................................................................................... 37 Figure 19 - CPU time for DH for 5x10 instances, according to the number of subwindows .. 38 Figure 20 - CPU time for DH for 5x15 instances, according to the number of subwindows .. 39 Figure 21 - CPU time for DH for 5x20 instances, according to the number of subwindows .. 40 Figure 22 - Construction of the solution with the IDH ............................................................ 42 Figure 23 - Updating the nodes in the second time window.................................................... 42 Figure 24 - Comparison between three heuristics for 5x10 problems ..................................... 43 Figure 25 - Comparison between three heuristics for 5x15 problems ..................................... 44 Figure 26 - Comparison between three heuristics for 5x20 problems ..................................... 44 Figure 27 - Comparison between three heuristics for 10x10 problems ................................... 45 Figure 28 - CPU time for 5x10, 5x15 and 5x20 problems....................................................... 45 Figure 29 - Gantt Diagram before re-scheduling ..................................................................... 47 Figure 30 - Re-Scheduling general scheme.............................................................................. 48 Figure 31 - Scheduled Graph with a SB procedure.................................................................. 50 Figure 32 - Gantt Diagram for a 4x4 instance.......................................................................... 50 Figure 33 - Reconstruction of the schedule to deal with a breakdown .................................... 51 Figure 34 - Reconstruction of the graph to deal with a breakdown ......................................... 51 Figure 35 - Cmax for (L,m) = (50,4)........................................................................................ 52 Figure 36 - Cmax for (L,m) = (50,3)........................................................................................ 53 Figure 37 - Cmax for R.H. shrinking, la-02 instance............................................................... 54 Figure 38 - CPU time in ms for R.H. shrinking, la-02 instance............................................... 55 Figure 39 – Cmax for R.H. shrinking; la06 instance, (t,m, L) = (60, 3, 300). ........................ 56 Figure 40 – CPU time for R.H. shrinking; la06 instance, (t,m,L) = (60,3,300)....................... 56 viii
分享到:
收藏