logo资料库

Algebra, Topology, Differential Calculus and Optimization for CS 2017.pdf

第1页 / 共1458页
第2页 / 共1458页
第3页 / 共1458页
第4页 / 共1458页
第5页 / 共1458页
第6页 / 共1458页
第7页 / 共1458页
第8页 / 共1458页
资料共1458页,剩余部分请下载后查看
Cover
Contents
Chapter 1 Introduction
Chapter 2 Vector Spaces, Bases, Linear Maps
Chapter 3 Matrices and Linear Maps
Chapter 4 Direct Sums, The Dual Space, Duality
Chapter 5 Determinants
Chapter 6 Gaussian Elimination,LU-Factorization, Cholesky Factorization, Reduced Row Echelon Form
Chapter 7 Vector Norms and Matrix Norms
Chapter 8 Eigenvectors and Eigenvalues
Chapter 9 Iterative Methods for Solving Linear Systems
Chapter 10 Euclidean Spaces
Chapter 11 QR-Decomposition for Arbitrary Matrices
Chapter 12 Basics of Affine Geometry
Chapter 13 Embedding an Affine Space in a Vector Space
Chapter 14 Basics of Projective Geometry
Chapter 15 The Cartan{Dieudonn´e Theorem
Chapter 16 Hermitian Spaces
Chapter 17 Isometries of Hermitian Spaces
Chapter 18 Spectral Theorems in Euclidean and Hermitian Spaces
Chapter 19 Variational Approximation of Boundary-Value Problems;Introduction to the Finite Elements Method
Chapter 20 Singular Value Decomposition and Polar Form
Chapter 21 Applications of SVD and Pseudo-Inverses
Chapter 22 The Geometry of Bilinear Forms;Witt’s Theorem; The Cartan{Dieudonn´e Theorem
Chapter 23 Polynomials, Ideals and PID’s
Chapter 24 Annihilating Polynomials and the Primary Decomposition
Chapter 25 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem
Chapter 26 Tensor Algebras and Symmetric Algebras
Chapter 27 Exterior Tensor Powers and Exterior Algebras
Chapter 28 Introduction to Modules; Modules over a PID
Chapter 29 The Rational Canonical Form and Other Normal Forms
Chapter 30 Topology
Chapter 31 A Detour On Fractals
Chapter 32 Differential Calculus
Chapter 33 Quadratic Optimization Problems
Chapter 34 Schur Complements and Applications
Chapter 35 Convex Sets, Cones, H-Polyhedra
Chapter 36 Linear Programs
Chapter 37 The Simplex Algorithm
Chapter 38 Linear Programming and Duality
Chapter 39 Extrema of Real-Valued Functions
Chapter 40 Newton’s Method and Its Generalizations
Chapter 41 Basics of Hilbert Spaces
Chapter 42 General Results of Optimization Theory
Chapter 43 Introduction to Nonlinear Optimization
Chapter 44 Soft Margin Support Vector Machines
Chapter 45 Total Orthogonal Families in Hilbert Spaces
Chapter 46 Appendix: Zorn’s Lemma; Some Applications
Bibliography
Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Engineering Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: jean@cis.upenn.edu c Jean Gallier April 24, 2017
2
Contents 1 Introduction 2 Vector Spaces, Bases, Linear Maps Linear Independence, Subspaces 2.1 Groups, Rings, and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 2.6 Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Linear Maps 3 Matrices and Linear Maps 3.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Haar Basis Vectors and a Glimpse at Wavelets 3.3 The Effect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 13 15 15 26 33 38 45 52 53 55 55 71 88 91 4 Direct Sums, The Dual Space, Duality Sums, Direct Sums, Direct Products . . . . . . . . . . . . . . . . . . . . . . 93 4.1 93 4.2 The Dual Space E∗ and Linear Forms . . . . . . . . . . . . . . . . . . . . . 108 4.3 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.4 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 127 4.5 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 136 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.6 5 Determinants 141 5.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 141 5.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.3 Definition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 155 5.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 158 5.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.7 The Cayley–Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 3
4 CONTENTS 5.9 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6 Gaussian Elimination, LU, Cholesky, Echelon Form 169 6.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 169 6.2 Gaussian Elimination and LU -Factorization . . . . . . . . . . . . . . . . . . 173 6.3 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 199 6.4 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 202 6.5 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.6 Transvections and Dilatations . . . . . . . . . . . . . . . . . . . . . . . . . . 224 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 7 Vector Norms and Matrix Norms 231 7.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.3 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 250 7.4 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 259 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 8 Eigenvectors and Eigenvalues 263 8.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 263 8.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 270 8.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 8.4 9 Iterative Methods for Solving Linear Systems 279 9.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 279 9.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 282 9.3 Methods of Jacobi, Gauss-Seidel, and Relaxation . . . . . . . . . . . . . . . 284 9.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 9.5 10 Euclidean Spaces 297 10.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 297 10.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 305 10.3 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 317 10.4 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 320 10.5 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 322 10.6 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 326 10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 11 QR-Decomposition for Arbitrary Matrices 329 11.1 Orthogonal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 11.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 333
CONTENTS 5 11.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 12 Basics of Affine Geometry 339 12.1 Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 12.2 Examples of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 12.3 Chasles’s Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 12.4 Affine Combinations, Barycenters . . . . . . . . . . . . . . . . . . . . . . . . 349 12.5 Affine Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 12.6 Affine Independence and Affine Frames . . . . . . . . . . . . . . . . . . . . . 358 12.7 Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 12.8 Affine Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 12.9 Affine Geometry: A Glimpse . . . . . . . . . . . . . . . . . . . . . . . . . . 372 12.10 Affine Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 12.11 Intersection of Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 13 Embedding an Affine Space in a Vector Space 381 13.1 The “Hat Construction,” or Homogenizing . . . . . . . . . . . . . . . . . . . 381 13.2 Affine Frames of E and Bases of ˆE . . . . . . . . . . . . . . . . . . . . . . . 388 13.3 Another Construction of ˆE . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 13.4 Extending Affine Maps to Linear Maps . . . . . . . . . . . . . . . . . . . . . 393 14 Basics of Projective Geometry 399 14.1 Why Projective Spaces? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 14.2 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 14.3 Projective Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 14.4 Projective Frames 14.5 Projective Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 14.6 Finding a Homography Between Two Projective Frames . . . . . . . . . . . 432 14.7 Affine Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 14.8 Projective Completion of an Affine Space . . . . . . . . . . . . . . . . . . . 448 14.9 Making Good Use of Hyperplanes at Infinity . . . . . . . . . . . . . . . . . 453 14.10 The Cross-Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 14.11 Fixed Points of Homographies and Homologies . . . . . . . . . . . . . . . . 460 14.12 Duality in Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 474 14.13 Cross-Ratios of Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 14.14 Complexification of a Real Projective Space . . . . . . . . . . . . . . . . . . 480 14.15 Similarity Structures on a Projective Space . . . . . . . . . . . . . . . . . . 482 14.16 Some Applications of Projective Geometry . . . . . . . . . . . . . . . . . . . 491 15 The Cartan–Dieudonn´e Theorem 497 15.1 The Cartan–Dieudonn´e Theorem for Linear Isometries . . . . . . . . . . . . 497 15.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 509 15.3 Fixed Points of Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
6 CONTENTS 15.4 Affine Isometries and Fixed Points . . . . . . . . . . . . . . . . . . . . . . . 513 . . . . . . . . . . . . 519 15.5 The Cartan–Dieudonn´e Theorem for Affine Isometries 16 Hermitian Spaces 523 16.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 523 16.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 532 16.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 537 16.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 539 16.5 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 542 16.6 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 16.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 17 Isometries of Hermitian Spaces 551 17.1 The Cartan–Dieudonn´e Theorem, Hermitian Case . . . . . . . . . . . . . . . 551 17.2 Affine Isometries (Rigid Motions) . . . . . . . . . . . . . . . . . . . . . . . . 560 18 Spectral Theorems 565 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 18.2 Normal Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 18.3 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 574 18.4 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 581 18.5 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 584 18.6 Rayleigh Ratios and the Courant-Fischer Theorem . . . . . . . . . . . . . . 587 18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 19 Introduction to The Finite Elements Method 597 19.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 597 19.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 607 19.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 610 20 Singular Value Decomposition and Polar Form 619 . . . . . . . . . . . . . . 619 20.1 Singular Value Decomposition for Square Matrices . . . . . . . . . . . 627 20.2 Singular Value Decomposition for Rectangular Matrices 20.3 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 630 20.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631 21 Applications of SVD and Pseudo-Inverses 633 21.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 633 21.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 638 21.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 21.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 644 21.5 Best Affine Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 21.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
CONTENTS 7 22 The Geometry of Bilinear Forms; Witt’s Theorem 657 22.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 22.2 Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 22.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 22.4 Adjoint of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 22.5 Isometries Associated with Sesquilinear Forms . . . . . . . . . . . . . . . . . 676 22.6 Totally Isotropic Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 680 22.7 Witt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686 22.8 Symplectic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 22.9 Orthogonal Groups and the Cartan–Dieudonn´e Theorem . . . . . . . . . . . 698 22.10 Witt’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 23 Polynomials, Ideals and PID’s 711 23.1 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711 23.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 23.3 Euclidean Division of Polynomials . . . . . . . . . . . . . . . . . . . . . . . 718 23.4 Ideals, PID’s, and Greatest Common Divisors . . . . . . . . . . . . . . . . . 720 23.5 Factorization and Irreducible Factors in K[X] . . . . . . . . . . . . . . . . . 728 23.6 Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732 23.7 Polynomial Interpolation (Lagrange, Newton, Hermite) . . . . . . . . . . . . 739 24 Annihilating Polynomials; Primary Decomposition 747 . . . . . . . . . . . . 747 24.1 Annihilating Polynomials and the Minimal Polynomial 24.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 749 24.3 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 755 24.4 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 764 25 UFD’s, Noetherian Rings, Hilbert’s Basis Theorem 771 25.1 Unique Factorization Domains (Factorial Rings) . . . . . . . . . . . . . . . . 771 25.2 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 785 25.3 Noetherian Rings and Hilbert’s Basis Theorem . . . . . . . . . . . . . . . . 791 25.4 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795 26 Tensor Algebras and Symmetric Algebras 797 26.1 Linear Algebra Preliminaries: Dual Spaces and Pairings . . . . . . . . . . . 798 26.2 Tensors Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 26.3 Bases of Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 26.4 Some Useful Isomorphisms for Tensor Products . . . . . . . . . . . . . . . . 816 26.5 Duality for Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 26.6 Tensor Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824 26.7 Symmetric Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 26.8 Bases of Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 26.9 Some Useful Isomorphisms for Symmetric Powers . . . . . . . . . . . . . . . 838
8 CONTENTS 26.10 Duality for Symmetric Powers . . . . . . . . . . . . . . . . . . . . . . . . . . 838 26.11 Symmetric Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841 27 Exterior Tensor Powers and Exterior Algebras 845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 27.1 Exterior Tensor Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 27.2 Bases of Exterior Powers . . . . . . . . . . . . . . . . 853 27.3 Some Useful Isomorphisms for Exterior Powers 27.4 Duality for Exterior Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 27.5 Exterior Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856 27.6 The Hodge ∗-Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 27.7 Left and Right Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 27.8 Testing Decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . 872 27.9 The Grassmann-Pl¨ucker’s Equations and Grassmannians . . . . . . . . . 875 27.10 Vector-Valued Alternating Forms . . . . . . . . . . . . . . . . . . . . . . . . 879 28 Introduction to Modules; Modules over a PID 883 28.1 Modules over a Commutative Ring . . . . . . . . . . . . . . . . . . . . . . . 883 28.2 Finite Presentations of Modules . . . . . . . . . . . . . . . . . . . . . . . . . 892 28.3 Tensor Products of Modules over a Commutative Ring . . . . . . . . . . . . 898 28.4 Torsion Modules over a PID; Primary Decomposition . . . . . . . . . . . . . 901 28.5 Finitely Generated Modules over a PID . . . . . . . . . . . . . . . . . . . . 907 . . . . . . . . . . . . . . . . . . . . . . . . 923 28.6 Extension of the Ring of Scalars 29 Normal Forms; The Rational Canonical Form 929 29.1 The Torsion Module Associated With An Endomorphism . . . . . . . . . . 929 29.2 The Rational Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . 937 29.3 The Rational Canonical Form, Second Version . . . . . . . . . . . . . . . . . 944 29.4 The Jordan Form Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 945 29.5 The Smith Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948 30 Topology 961 30.1 Metric Spaces and Normed Vector Spaces . . . . . . . . . . . . . . . . . . . 961 30.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967 30.3 Continuous Functions, Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 976 30.4 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983 30.5 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 30.6 Sequential Compactness in Metric Spaces . . . . . . . . . . . . . . . . . . . 1003 30.7 Complete Metric Spaces and Compactness . . . . . . . . . . . . . . . . . . . 1011 30.8 The Contraction Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . 1012 30.9 Continuous Linear and Multilinear Maps . . . . . . . . . . . . . . . . . . . . 1017 30.10 Normed Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 30.11 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
分享到:
收藏