基于深度学习的目标检测算法综述(一)
本文内容原创,作者:美图云视觉技术部 检测团队,转载请注明出处
一、 背景
二、创新内容、改进方向
1.Two/One stage算法改进
1.1 Two stage
1.1.1 R-FCN: Object Detection via Region-based Ful
1.1.2 R-FCN-3000 at 30fps: Decoupling Detection an
1.1.3 Mask R-CNN
1.2 One stage
1.2.1 YOLO9000: better, faster, stronger
1.2.2 YOLOv3: an incremental improvement
1.2.3 Object detection at 200 Frames Per Second
1.2.4 DSSD: Deconvolutional Single Shot Detector
1.2.5 DSOD : learning deeply supervised object det
本文内容原创,作者:美图云视觉技术部 检测团队,转载请注明出处
2. 解决方案
2.1 小物体检测
2.1.1 Feature Pyramid Networks for Object Detectio
2.1.2 Beyond Skip Connections Top Down Modulation
2.2 不规则形状物体的检测
2.2.1 Deformable Convolutional Networks
2.3 解决正负样本不均衡的问题
2.3.1 Focal Loss for Dense Object Detection
2.3.2 Chained Cascade Network for Object Detection
2.3.3 RON-Reverse Connection with Objectness Prior
2.4 被遮挡物体检测
2.4.1 Soft-NMS -- Improving Object Detection With
2.4.2 RRC: Accurate Single Stage Detector Using Re
2.5 解决检测mini-batch过小的问题
2.5.1 MegDet: A Large Mini-Batch Object Detector
2.6 关注物体之间关联性信息
2.6.1 Relation Networks for Object Detection
2.7 改进网络结构以提升效果
2.7.1 DetNet: A Backbone network for Object Detect
2.7.2 RefineDet:Single-Shot Refinement Neural Netw
2.7.3 Pelee: A Real-Time Object Detection System o
2.7.4 Receptive Field Block Net for Accurate and F
本文内容原创,作者:美图云视觉技术部 检测团队,转载请注明出处
3. 扩展应用、综述
3.1 logo检测:Scalable Object Detection for Stylized
3.2 实例分割:Path Aggregation Network for Instance Seg
3.3 目标检测用于视频分段:Rethinking the Faster R-CNN Archite
3.4 从零训练目标检测网络: Mimicking Very Efficient Network f
3.5 调研速度和准确率平衡的综述:Speed/accuracy trade-offs for mo