logo资料库

topology__2Ed_-_James_Munkres.pdf

第1页 / 共547页
第2页 / 共547页
第3页 / 共547页
第4页 / 共547页
第5页 / 共547页
第6页 / 共547页
第7页 / 共547页
第8页 / 共547页
资料共547页,剩余部分请下载后查看
Front
Contents
Preface
A Note to the Reader
Part I GENERAL TOPOLOGY
Chapter 1 Set Theory and Logic
1 Fundamental Concepts
2 Functions
3 Relations
4 The Integers and the Real Numbers
5 Cartesian Products
6 Finitesets
7 Countable and Uncountable Sets
*8 The Principle of Recursive Definition
9 Infinite Sets and the Axiom of Choice
10 Well-ordered Sets
*11 The Maximum Principle
*Supplementary Exercises: Well-Ordering
Chapter 2 Topological Spaces and Continuous Functions
12 Topological Spaces
13 Basis for a Topology
14 The Order Topology
15 The Product Topology on X x Y
16 The Subspace Topology
17 Closed Sets and Limit Points
18 Continuous Functions
19 The Product Topology
20 The Metric Topology
21 The Metric Topology (continued)
*22 The Quotient Topology
*Supplementary Exercises: Topological Groups
Chapter 3 Connectedness and Compactness
23 Connected Spaces
24 Connected Subspaces of the Real Line
*25 Components and Local Connectedness
26 Compact Spaces
27 Compact Subspaces of the Real Line
28 Limit point compactness
29 LocalCompactness
*Supplementary Exercises: Nets
Chapter 4 Countability and Separation Axioms
30 The Countability Axioms
31 The Separation Axioms
32 Normal Spaces
33 The Urysohn Lemma
34 The Urysohn Metrization Theorem
*35 The Tietze Extension Theorem
*36 Imbeddings of Manifolds
*Supplementary Exercises: Review of the Basics
Chapter 5 The Tychonoff Theorem
37 The Tychonoff Theorem
38 The stone-cech Compactification
Chapter 6 Metrization Theorems and Paracompactness
39 Local Finiteness
40 The Nagata-Smirnov Metrization Theorem
41 Paracompactness
42 The Smirnov Metrization Theorem
Chapter 7 Complete Metric Spaces and Function Spaces
43 Complete Metric Spaces
*44 A Space-Filling Curve
45 Compactness in Metric Spaces
46 Pointwise and Compact Convergence
47 Ascoli's Theorem
Chapter 8 Baire Spaces and Dimension Theory
48 Baire Spaces
*49 A Nowhere-Differentiable Function
50 Introduction to Dimension Theory
*Supplementary Exercises: Locally Euclidean Spaces
Part II ALGEBRAIC TOPOLOGY
Chapter 9 The Fundamental Group
51 Homotopy of Paths
52 The Fundamental Group
53 Covering Spaces
54 The Fundamental Group of the Circle
55 Retractions and Fixed Points
*56 The Fundamental Theorem of Algebra
*57 The Borsuk-Ulam Theorem
58 Deformation Retracts and Homotopy Type
59 The Fundamental Group of Sn
60 Fundamental Groups of Some Surfaces
Chapter 10 Separation Theorems in the Plane
61 The Jordan Separation Theorem
*62 Invariance of Domain
63 The Jordan Curve Theorem
64 Imbedding Graphs in the Plane
65 The Winding Number of a Simple Closed Curve
66 The Cauchy Integral Formula
Chapter 11 The Seifert-van Kampen Theorem
67 Direct Sums of Abelian Groups
68 Free Products of Groups
69 Free Groups
70 The Seifert-van Kampen Theorem
71 The Fundamental Group of a Wedge of Circles
72 Adjoining a Two-cell
73 The Fundamental Groups of the Torus and the Dunce Cap
Chapter 12 Classification of surfaces"
74 Fundamental Groups of Surfaces
75 Homology of Surfaces
76 Cutting and Pasting
77 The Classification Theorem
78 Constructing Compact Surfaces
Chapter 13 Classification of Covering Spaces
79 Equivalence of Covering Spaces
80 The Universal Covering Space
*81 Covering Transformations
82 Existence of Covering Spaces
*Supplementary Exercises: Topological Properties and rcl
Chapter 14 Applications to Group Theory
83 Covering Spaces of a Graph
84 The Fundamental Group of a Graph
85 Subgroups of Free Groups
Bibliography
Index
Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii A Note to the Reader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi . . . . . Part I GENERAL TOPOLOGY L ,.+ Chapter 1 Set Theory and Logic . . . . . . . . . . . . . . . . . . . . . . . 3 1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Functions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 The Integers and the Real Numbers . . . . . . . . . . . . . . . . . . . 30 5 Cartesian Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Finitesets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 . . . . . . . . . . . . . . . . . . . . 44 7 Countable and Uncountable Sets *8 The Principle of Recursive Definition . . . . . . . . . . . . . . . . . . 52 Infinite Sets and the Axiom of Choice . . . . . . . . . . . . . . . . . . 57 10 Well-ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 * 1 1 The Maximum Principle . . . . . . . . . . . . . . . . . . . . . . . . . 68 *Supplementary Exercises: Well-Ordering . . . . . . . . . . . . . . . . . . . 72 h F 9
iv Con tents Chapter 2 Topological Spaces and Continuous Functions 12 Topological Spaces 13 Basis for a Topology 14 The Order Topology 15 The Product Topology on X x Y 16 The Subspace Topology 17 Closed Sets and Limit Points 18 Continuous Functions 19 The Product Topology 20 The Metric Topology 2 1 The Metric Topology (continued) *22 The Quotient Topology *Supplementary Exercises: Topological Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 75 78 84 86 88 92 102 112 119 129 136 145 Chapter 3 Connectedness and Compactness 23 Connected Spaces 24 Connected Subspaces of the Real Line "25 Components and Local Connectedness 26 Compact Spaces 27 Compact Subspaces of the Real Line 28 Limit point compactnes$ 29 LocalCompactness *Supplementary Exercises: Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 148 153 159 163 172 178 182 187 Chapter 4 Countability and Separation Axioms ..I . . . . . 30 The Countability Axioms 3 1 The Separation Axioms 32 Normal Spaces 33 The Urysohn Lemma 34 The Urysohn Metrization Theorem *35 The Tietze Extension Theorem *36 *Supplementary Exercises: Review of the Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Imbeddings of Manifolds 190 195 200 207 214 219 224 228 Chapter 5 The Tychonoff Theorem 37 The Tychonoff Theorem 38 The stone-cech Compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 230 237 Chapter 6 Metrization Theorems and Paracompactness 39 Local Finiteness 40 The Nagata-Smirnov Metrization Theorem 41 Paracompactness 42 The Smirnov Metrization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 244 248 252 261
Contents v Chapter 7 Complete Metric Spaces and Function Spaces 43 Complete Metric Spaces *44 A Space-Filling Curve 45 Compactness in Metric Spaces 46 Pointwise and Compact Convergence 47 Ascoli's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 264 271 275 281 290 Chapter 8 Baire Spaces and Dimension Theory 48 Baire Spaces *49 A Nowhere-Differentiable Function 50 *Supplementary Exercises: Locally Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to Dimension Theory 294 295 300 304 316 Part I1 ALGEBRAIC TOPOLOGY. ii4 E.V . 1 Chapter 9 The Fundamental Group I 5 1 Homotopy of Paths 52 The Fundamental Group 53 Covering Spaces 54 The Fundamental Group of the Circle 55 Retractions and Fixed Points *56 The Fundamental Theorem of Algebra *57 The Borsuk-Ulam Theorem 58 Deformation Retracts and Homotopy Type 59 The Fundamental Group of Sn 60 Fundamental Groups of Some Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 322 330 335 341 348 353 356 359 368 370 376 376 381 385 394 398 403 Chapter 10 Separation Theorems in the Plane Invariance of Domain 61 The Jordan Separation Theorem *62 63 The Jordan Curve Theorem 64 65 The Winding Number of a Simple Closed Curve 66 The Cauchy Integral Formula Imbedding Graphs in the Plane Chapter 11 The Seifert-van Kampen Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Direct Sums of Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . . 68 Free Products of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Free Groups . . . . . . . . . . . . . . . . . . . . 70 The Seifert-van Kampen Theorem . . . . . . . . . . . . . 7 1 The Fundamental Group of a Wedge of Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Adjoining a Two-cell 73 The Fundamental Groups of the Torus and the Dunce Cap . . . . . . .
vi Contents Chapter 12 Classification of surfaces" 4%5 74 Fundamental Groups of Surfaces 446 75 Homology of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 454 76 Cutting and Pasting 457 462 77 The Classification Theorem 78 Constructing Compact Surfaces 47 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " s" * I fl .> i *8 1 Covering Transformations Chapter 13 Classification of Covering Spa- 79 Equivalence of Covering Spaces 80 The Universal Covering Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 478 484 487 82 Existence of Covering Spaces . . . . . . . . . . . . . . . . . . . . . . 494 . . . . . . . . . . 499 *Supplementary Exercises: Topological Properties and rcl . 501 501 506 5 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Covering Spaces of a Graph 84 The Fundamental Group of a Graph 85 Subgroups of Free Groups Chapter 14 Applications to Group Theory . . . . . 3T.nj!'P. ."s?k!A Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 * 2 i J i k , I . >
分享到:
收藏