5‘z{6ˇ"`K
Abstract
£1⁄ƒ^xK"3z”§5†/˘ 6¶ ? 1 X 0"
£2⁄)zKc§K"
£3⁄OL§(§=(J(§'"
1 ^X/{)55y£15'⁄
^I=¶"
min x1 − x2 + 2x3
s.t.
2x1 + x2 − x3 ≤ 3,
0 ≤ x1 ≤ 3,
− 1 ≤ x2 ≤ 6,
x3 ≷ 0.
2 ^X/{)55y£15'⁄
^I=¶"
min 4x1 + 2x2
s.t.
2x1 − 3x2 ≥ 2,
− x1 + x2 ≥ 3,
xi ≥ 0,
∀i.
1
3 ^X/{)55y£15'⁄
^I=¶"
min 2x1 − 3x2 + 4x3
s.t. x1 + x2 + x3 ≤ 8,
− x1 + 2x2 − x3 ≥ 4,
2x1 − x2 ≤ 6,
∀i.
xi ≥ 0,
4 Xe55yØ5y£5'⁄
min − x1 + x2
s.t.
2x1 − x2 ≥ −2,
x1 − 2x2 ≤ 2,
x1 + x2 ≤ 5,
x1 ≥ 0,
x2 ≷ 0.
5 ^e{)‘zflK£15'⁄
1
1
1
—': x(1) =
min
x2
1 + x2
" c 2 gS=§3dL§¥ƒO d(1)! x(2)! d(2)! x(3)§
2 + 2x2
3
¿y d(1) d(2) R"
2
6 ^{)eª‘zflK£10'⁄
.
1
1
—': x(1) =
min
x2
1 + x2
2 − 4x1 − 5x2 − x1x2 − 5.
7 ^KT^ƒeª‘zflK‘)£15'⁄
2 − 6x1 − 4x2
1 + x2
min x2
s.t. x1 + x2 ≤ 3,
x1, x2 ≥ 0.
8 ^:v…Œ{ƒ)‘zflK£10'⁄
min x2
1 + x2
2
s.t. x1 + x2 = 1.
3