logo资料库

[高清晰版奥本海默信号与系统第二版课后习题解答].solutions.manual.signals.and.systems.(2....pdf

第1页 / 共634页
第2页 / 共634页
第3页 / 共634页
第4页 / 共634页
第5页 / 共634页
第6页 / 共634页
第7页 / 共634页
第8页 / 共634页
资料共634页,剩余部分请下载后查看
CHAPTER 1 1.1 to 1.41 - part of text 1.42 (a) Periodic: Fundamental period = 0.5s (b) Nonperiodic (c) Periodic Fundamental period = 3s (d) Periodic Fundamental period = 2 samples (e) Nonperiodic (f) Periodic: Fundamental period = 10 samples (g) Nonperiodic (h) Nonperiodic (i) Periodic: Fundamental period = 1 sample l.43 y t( ) = 3 cos 200t 2 ---+ 6 2 = 9 cos 200t ---+ 6 = 9 --- 2 cos 400t 1 ---+ 3 (a) DC component = 9 --- 2 (b) Sinusoidal component = 9 --- 2 cos 400t ---+ 3 Amplitude = 9 --- 2 1 p Ł ł Ł ł p Ł ł p Ł ł p Ł ł
Fundamental frequency = 200 p---------Hz 1.44 The RMS value of sinusoidal x(t) is A 2⁄ . Hence, the average power of x(t) in a 1-ohm resistor is ( A 2⁄ )2 = A2/2. 1.45 Let N denote the fundamental period of x[N]. which is defined by N = 2p W------ The average power of x[n] is therefore N -1 x2 n[ ] n=0 N -1 2 A2 cos P = = = 1 ---- N 1 ---- N A2 ------ N 2p n ---------- N f+ n=0 N -1 n=0 2 cos 2p n ---------- N f+ 1.46 The energy of the raised cosine pulse is E w ⁄ w ⁄– w ⁄ = = 1 --- 2 = 1 --- 2 0 --- 3 1 ---Ł 2 2 = 0 w ⁄ 1 --- 4 ( ( ( cos ) t 1+ )2 td 2 ( cos ) t + 2 cos ( ) t 1+ ) td cos ( 2w ) t + + 1 --- 2 2 cos ( ) t 1+ td 3p = ⁄ 4w 1 --- 2 w---- 1.47 The signal x(t) is even; its total energy is therefore E 5= 2 0 x2 t( ) td 2 Ł ł Ł ł w p p w w p w Ł ł p ł p Ł ł
4= 2 1( )2 t 0 2 t[ ] = 4 t=0 + t–( 5 5+d 2 4 1 t–( --- 5 3 2 – )2 td 5 )3 t=4 = 8 2 ---+ 3 = 26 ------ 3 1.48 (a) The differentiator output is y t( ) = 1 1– 0 4– < < 5 for – t < < for 4 5 t otherwise (b) The energy of y(t) is 5+d 2 4–= 5– = 1+ 1 1( )2 t E = 4 1–( )2 td 1.49 The output of the integrator is y t( ) for At td = = t A t 0 Hence the energy of y(t) is E = T 0 A2t2 td = A2T 3 ------------- 3 0 t T x(5t) 1.0 1.50 (a) (b) -1 -0.8 0 0.8 1 x(0.2t) 1.0 -25 -20 0 20 25 t t 3 £ £
1.51 1.52 (a) x(10t - 5) 1.0 0 0.1 0.5 0.9 1.0 t x(t) 1 -1 1 2 3 -1 y(t - 1) -1 1 2 3 -1 x(t)y(t - 1) 1 1 -1 -1 2 3 t t t 4
1.52 (b) 1.52 (c) x(t + 1) x(t - 1) 1 1 -1 -1 1 2 3 4 y(-t) y(-t) 1 -2 -1 1 2 3 4 -1 x(t - 1)y(-t) 1 -2 -1 1 2 3 4 -1 -2 -1 1 2 3 -1 -2 -1 1 2 3 4 x(t + 1)y(t - 2) -2 -1 1 2 3 4 5 t t t t t t
1.52 (d) x(t) 1 -3 -2 -1 1 2 3 -1 y(1/2t + 1) 6 -5 -4 -3 -2 -1 1 2 4 6 1.52 (e) -1.0 x(t - 1)y(-t) 1 -3 -2 -1 1 2 3 -1 -4 -3 -2 -1 x(t) 1 -1 1 2 3 y(2 - t) 1 2 3 -4 -3 -2 -1 x(t)y(2 - t) -1 -1 1 2 3 6 t t t t t t
1.52 (f) x(t) 1 -2 -1 1 2 -1 -5 -3 -2 -1 y(t/2 + 1) 1.0 -6 1 1 2 3 -1.0 x(2t)y(1/2t + 1) +1 -0.5 -1 1 2 1.52 (g) -7 -6 -5 -4 -3 -2 -1 x(4 - t) 1 -1 y(t) -2 -1 1 2 4 x(4 - t)y(t) = 0 -3 -2 -1 1 2 3 7 t t t t t t
1.53 We may represent x(t) as the superposition of 4 rectangular pulses as follows: g1(t) 1 1 2 3 4 g2(t) 1 g3(t) 1 g4(t) 11 2 3 4 1 2 3 4 1 0 1 2 3 4 t t t t ) = b– ( g at To generate g1(t) from the prescribed g(t), we let g1 t( ) where a and b are to be determined. The width of pulse g(t) is 2, whereas the width of pulse g1(t) is 4. We therefore need to expand g(t) by a factor of 2, which, in turn, requires that we choose a 1 ---= 2 The mid-point of g(t) is at t = 0, whereas the mid-point of g1(t) is at t = 2. Hence, we must choose b to satisfy the condition a 2( ) or 0= b– b = 2a = 2 1 ---Ł 2 = 1 Hence, g1 t( ) = g 1 ---t 2 1– g = Proceeding in a similar manner, we find that g2 t( ) g3 t( ) g4 t( ) Accordingly, we may express the staircase signal x(t) in terms of the rectangular pulse g(t) as follows: 2 5 ---t ---– 3 3 3–( ) g t ( g 2t 7– = = ) 8 ł Ł ł Ł ł
分享到:
收藏