第1章 概率论
1.1 概率空间的概念
随机信号分析·部分概念与公式
Sorted out by
&
若 表示随机试验,简称试验,试验中每一个可能的结果称为样本点,用 或 表示。试验 中一切可能
结果的集合称为样本空间,用 或 表示,即
下讨论三类具体的随机现象的模型及其性质。
1. 古典概率
①古典概率的计算式
设 是一试验,其概率空间
若所观察的随机现象用 表示,其中包含 个样本点,则事件 出现的概率
式(1-3)即为古典概率中事件概率的计算式。
②古典概率及其事件的性质
1) (非负性)事件发生的可能性大小是一非负的不超过 1 的实数,即
2) (规范性)必然事件的概率是 1,即
其中 表示试验 中的必然事件。
(1-1)
(1-2)
(1-3)
(1-4)
(1-5)
3) (可列可加性)若有限个两两互不相交的试验 中的事件的和事件仍是试验 中的事件,则和事件的概率等于
每一个事件的概率之和,即
(1-6)
2. 几何概率
设
为区域 大小的量度,区域 中任意可能出现的小区域 用量度
表示,则事件 发生的概率
(1-7)
式(1-7)即为几何概率中事件概率的计算式。
➢ 几何概率满足非负性、规范性和可列可加性。
3. 统计概率
设 是一试验, 是其样本空间,
是试验 的事件。若在同样的条件下,将 独立重复地进行 次,
事件 出现了 次,则称 是这 次试验中事件 出现的频数,比值
(1-8)
称为 次试验中事件 出现的频率。
➢ 统计概率满足非负性、规范性和可列可加性。
4. 概率空间
若有一个试验,所有样本点的集合构成样本空间 ,在样本空间中一个样本点或若干样本点的适当集合
称为事件域, 中的每一集合称为事件。若
,则
就是事件 的概率,并称这三个实体的结合
为一个概率空间。
1
目 录
©Josh G. and Gatsby V. All Rights Reserved.
第 1 章 概率论 ························································································································································ 1
1.1 概率空间的概念 ·················································································································································· 1
第 2 章 随机过程 ······················································································································································ 3
2.1 随机过程的基本概念及其统计特性 ····················································································································· 3
2.2 随机过程的微分与积分 ······································································································································· 6
2.3 平稳随机过程和遍历随机过程 ···························································································································· 8
2.4 随机过程的联合概率分布和互相关函数 ············································································································ 10
2.5 正态随机过程···················································································································································· 12
2.6 离散时间随机过程 ············································································································································ 13
第 3 章 平稳随机过程的谱分析 ······························································································································ 17
3.1 随机过程的谱分析 ············································································································································ 17
3.2 平稳随机过程功率谱密度的性质 ······················································································································· 18
3.3 功率谱密度和自相关函数的关系——WIENER-KHINCHINE 定理 ······································································· 19
3.4 随机过程的互谱密度 ········································································································································· 19
3.5 白噪声 ······························································································································································ 20
3.6 离散时间随机过程的功率谱密度 ······················································································································· 20
第 4 章 随机信号通过线性系统的分析 ··················································································································· 22
4.1 线性系统的基本理论 ········································································································································· 22
4.2 随机信号通过连续时间系统的分析 ··················································································································· 23
4.3 随机信号通过离散时间系统的分析 ··················································································································· 25
4.4 信号的产生与白化 ············································································································································ 26
4.5 白噪声通过线性系统的分析 ······························································································································ 27
4.6 线性系统输出端随机信号的概率分布 ··············································································································· 28
第 5 章 窄带随机过程 ············································································································································· 29
5.1 复随机过程和解析过程 ··························································································································· 29
5.2 窄带随机过程的表示方法 ························································································································ 31
5.3 窄带 GAUSS 随机过程的统计特性分析 ····································································································· 33
5.4 窄带 GAUSS 过程包络平方的概率密度 ····································································································· 34
第 6 章 随机信号通过非线性系统 ·························································································································· 35
6.1 随机信号通过无记忆系统的概率分布 ··············································································································· 35
6.2 随机信号通过无记忆系统的矩 ·························································································································· 36
2
第2章 随机过程
2.1 随机过程的基本概念及其统计特性
1. 随机过程的基本概念
①随机过程的定义
定义 1 设随机试验 的样本空间为
,若对
,总有一个确知的时间函数
与之对应;由此,
对所有
,可以得到一族时间 的函数,称为随机过程。
定义 2 若对于每个特定的时间
,
都是随机变量,则称
为随机过程。
②随机变量(Random Variables)和随机过程(Stochastic Processes)
“随机变量”框架对应于某一准则,在该准则下,实验的每次结果都可以用一个“数”进行刻画。随机变
量 与一样本空间 相关联,对于样本空间中的每一事件 ,都以一个“数”赋予随机变量 ,表示为
,
简写为 。
“随机过程”框架也对应于某一准则,在该准则下,实验的每次结果需用一个时变函数
而不是一个数
进行刻画,比如某空间观测系统单个通道的输出信号,其每次实验结果为一时变函数(确定信号),时变函数
称为随机过程的一个样本函数或一次实现(realization),随机过程记为
,简写为
。
③随机过程在不同情况下的含义
表 2-1 随机过程在不同情况下的含义
变量
变量
固定
固定
变量
固定
变量
固定
的含义
时变函数/信号集合/族(ensemble)
样本函数
随机变量
确定数
2. 随机过程的分类
①按照信号幅值/状态连续和离散进行分类
表 2-2 按时间和状态对随机过程分类
时间
连续
离散
连续随机过程
连续随机序列
离散随机过程
离散随机序列
幅值(状态)
连续
离散
②按照统计分布进行分类:宽平稳随机过程(e.g. 热噪声)、正态(Normal)随机过程、Markov 随机过程、独立增量
随机过程、Rayleigh 随机过程、独立随机过程等。
3. 随机过程的概率分布①
①一维概率分布
(2-1)
其中 是某一固定的时刻。对于 1D-PDF,若连续随机过程的
分段单调可导(固定 时),则可采用概率近似
相等法求取。下用一例简单说明。
例 若随机过程
,其中
,试求
。
解 考虑随机变量 ,其属于区间
的概率为
① 随机过程的基本分析方法:采用时间固定(Time Freezing)法,使随机过程退减为随机变量,由此可直接采用针对单个随机变量的统
计特性分析方法,求取概率分布函数,概率密度函数,特征函数,矩;若考虑两个时刻的联合统计特性分析,可采用针对两个随机
变量的联合统计特性分析方法;依此类推,N 个时刻的联合统计特性分析,可采用针对 N 个随机变量的联合统计特性分析方法。
3
2.1 随机过程的基本概念及其统计特性
由
当
,有
时,有
,其图示如图 2-1。由图知,
,即随
机 变 量 落 入 区 间
的 概 率 可 用 随 机 变 量 落 入 区 间
的概率来表示,也即
进一步表示为
整理移项得
其中
②二维概率分布
其中 、 是某两个固定的时刻。
③ 维概率分布
其中
是某 个固定的时刻。
④概率分布函数的主要性质
图 2-1
,代入上式,可得
(2-2)
(2-3)
序号
性质
描述
表 2-3 PDF 的主要性质
1
2
3
4
5
6
4
状态小于 为不可能事件
状态全小于 为必然事件
PDF 具有非负性
PDF 具有规范性(归一性)
—
—
4. 随机过程的数字特征
随着时间选择的密度和长度增加,联合概率分布可以较为全面地刻画和描述信号的统计信息。但在实际中,
对于一般的随机过程,其概率分布往往难以甚至无法确定。而随机过程的数字特征往往可直接利用观测进行估
第 2 章 随机过程
计,在很多场合甚至只需要利用一个样本函数或一次实现即可。
①数学期望(一阶矩/均值/统计平均/集平均)
②均方值和方差
1) 均方值(二阶原点矩)
➢ 均方根
2) 方差(二阶中心矩)
➢ 标准差(方差根/均方差)
③自相关函数和协方差函数
1) 自相关函数(二阶混合原点矩)
➢ 自相关函数的特性:
(2-4)
(2-5)
(2-6)
(2-7)
(2-8)
(2-9)
a) 反映了
在任意两个时刻样本函数的时域起伏程度,与信号带宽有关;
b)
,即
的均方值是自相关函数的特例;
c) 归一化的自相关函数
反映了两个状态的正交程度,越接近 0 时正交程度越强,越接近 1 时
线性程度越强。
2) 协方差函数(二阶混合中心矩/中心化自相关函数)
➢ 协方差函数的特性:
(2-10)
a) 反映了
在任意两个时刻的起伏值之间的相关程度;
b) 归一化的自相关函数
反映了两个状态的正交程度,越接近 0 时正交程度越强,越接近 1 时
线性程度越强。
5. 随机过程的特征函数
①一维特征函数
➢ 高斯过程的一维特征函数
➢ 矩生成函数( 阶原点矩函数)
(2-11)
(2-12)
(2-13)
5
2.2 随机过程的微分与积分
②二维特征函数
➢ 相关函数
③ 维特征函数
④第二类特征函数
➢ 累积量生成函数
2.2 随机过程的微分与积分
1. 随机连续性
若随机过程
满足
(2-14)
(2-15)
(2-16)
(2-17)
(2-18)
(2-19)
(2-20)
对于零均值的平稳随机过程,二阶累积量和三阶累积量分别与自相关函数和三阶矩相等,但
则称过程
在 时刻均方意义下连续,简称过程
在 时刻均方连续(或称
连续)。若用过程
的相
关函数表示,则有
(2-21)
(2-22)
(2-23)
因此,若对于 、 时刻,函数
在
上连续,则随机过程
必在 时刻均方连续。
由随机过程
的均方连续性可以导出①其数学期望必然具有连续性,即
因此可将结果写为
即对随机过程
可以交换求极限与数学期望的次序。
① 证明如下:设随机变量
,由
,有
则
由于
即
6
均方连续,即
,则
2. 随机过程的微分
①随机过程均方微分的定义
对于随机过程
,若均方意义下的极限
存在,则称
具有均方意义下的微
第 2 章 随机过程
分,简称均方微分,记为
②随机过程可微的条件
(2-24)
随机过程
可微的充分条件是满足 Cauchy 准则:相关函数在它的自变量相等时,存在二阶偏导数,即
(2-25)
表 2-4 随机过程均方微分的统计特性
的平稳性
非平稳
①
平稳
0
存在
③随机过程均方微分的统计特性
统计特性
均值
互相关函数
相关函数
自相关函数
3. 随机过程的积分
①随机过程均方积分的定义
对于随机过程
,若均方意义下的极限
则称随机变量
为过程
具在区间
上的均方积分。
①
②
③
平稳时其余两个关系式可同理推得。
非平稳时其余两个关系式可同理推得。
③
②
(2-26)
(2-27)
.
,
7
2.3 平稳随机过程和遍历随机过程
②随机过程均方可积的条件
随机过程
均方可积的充分条件为
(2-28)
③随机过程均方积分的统计特性
表 2-5 随机过程均方积分的统计特性
时的表达式
统计特性
均值
方差
4. 自相关函数
2.3 平稳随机过程和遍历随机过程
1. 平稳随机过程
①严平稳(Strict-Sense Stationary, SSS)随机过程
1) 严平稳随机过程的定义
设随机过程
的 维概率密度满足
或其 维概率分布满足
则称
为严(格)平稳随机过程。
(2-29)
(2-30)
➢ 由此,严平稳随机过程的统计特性与时间绝对起点无关,或者说具有时间平移不变性。
2) 严平稳随机过程的统计特性
一维
统计特性
概率分布
均值
均方值
方差
概率分布
二维
自相关函数
自协方差函数
8
表 2-6 严平稳随机过程的统计特性
表达式
特点
均为与时
间无关的
常数
仅与时间
差有关