logo资料库

论文研究-带有初始误差的机械手轨迹跟踪的快速迭代学习控制.pdf

第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
资料共7页,全文预览结束
31 1 2011 1   Systems Engineering — Theory & Practice Vol.31, No.1 Jan., 2011 : 1000-6788(2011)01-0165-07 : TP24; TP273 : A Æ  , (  ,  066004)  !#$% ’()Æ, *,-. 012 4-, 4-.6, 708: Kawamura 08 >  #%ABCDE &. ()IBC8.  $%)K,), MN:O ./0, P RIST U#’. 783 P )8VI (TUW, 3 PD )86X Y,, Z[:5M6\]^ 7E9. ‘:ac:)0e .<, f : gh<. $%; ; I8; BC); ’( Rapid ILC control of manipulator trajectory tracking with initial error (Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China) WANG Hong-bin, WANG Yan Abstract A discussion was made on the control of tracking for n joint manipulator systems with initial error. First, corresponding systems were turned into lower order systems by reduction change and then the lower order systems were redesigned, which could eliminate the limitation that the initial state of each iterative must be equal to its ideal value in Kawamura’s method or fixed. Second, a new rapid iterative learning algorithm was proposed to control the transformed system. It made the best of effective information the system had saved and the output could converge to the desired output as quickly as possible. The convergence speed of the algorithm is faster than the P type algorithm and the computation process is easier than the PD type algorithm. Meanwhile, the instability due to differential operation is avoided in the algorithm. Simulation results validate the validity of the scheme and real-time capability of the system is improved. Keywords manipulator system; initial error; rapid algorithm; iterative learning control; trajectory track- ing 1 i Æ, ,   . ,   ,    “”. ,   !" "## ,  !. $% ,   : 2009-09-08 kl!": $& (1966–), %, ’&, , % (&’(!* +", #)*$%, ,&$, ,$, -( , E-mail: hb wang@ysu.edu.cn; $( (1985–), , &% (, % (&’01$, #)*$, E-mail: W13653365331@163.com.
166  ,  * * 1  2 + 31 .34, .$%,  251016’, (3 2, $% ! 01’44. $%55, 6:  5$%6851686. $%6897) 78$%’, 62 98::;. 9  ;38<;+5!6<8=51016<86, >?;:.>:<. /2@, ? [1] AB6DE 6<8=. . ? [2] A$%", >EF<68G78, 2 68!, 12AH68. ? [3] A;;B G6<8J, K# 88JA, A68CD;?3.. ? [4] /2 5!6<4 ;38, > 2-D  :Æ$%G, 2HI!’. H/2$%64, =$%CLJ$%68972 ’78, C  : M, I/2  AN". ?JK6D,   , O2H !%,  Kawamura[5] ";B$%.$%6851 687P$%68>D8. H$%; P : uk+1(t) = uk(t) + Lek(t) (1) PD : uk+1(t) = uk(t) + Lp(t)ek(t) + Ld(t) ˙ek(t) (2) K ek(t) = yd(t) − yk(t), yd(t) 5101, uk(t)yk(t) L k 5!A’0 1. PD 62 P JD, 2AQKBNO9QK# ANQKALLQM:ES ;4, > ;98. ?;ANQK4 , >AQK65AQKQK$%.>H  , 6<8>D84 AND51A, S ’. 2 <=>?@ GP -  "T 7U: D (q(t)) ¨q(t) + h (q(t), ˙q(t)) + c (q(t)) = u(t) (3) V6855U7, ;QWVXG;78YWZ[X, AY U". , u(t) ∈ Rn ZUC i(i = 1, 2,··· , n) \ n V?]; q(t) ∈ Rn ZU  n  J8]; ˙q(t) ∈ Rn ZU  n  ]; ¨q(t) ∈ Rn ZU  n  C]; D (q) ZUC6 n × n 2?3; h (q, ˙q) ZU n ^WX]; c (q(t)) ZU n .]. k 5!,  $%78"ZU D (qk(t)) ¨qk(t) + h (qk(t), ˙qk(t)) + c (qk(t)) = uk(t) (4) Kawamura _2 (3) QWC, k 5$% uk(t) = ˆc (qk(t)) + kp (qd(t) − qk(t)) + kv ( ˙qd(t) − ˙qk(t)) + µk(t) (5) qd(t) ZU8H7, J8\Æ kp \ kv Æ8?3=, ˆc (qk(t)) ] L‘Y,  µk(t) "Ua 8H7#2.  (5) % (4),  D (qk(t))¨qk(t)) + h (qk(t), ˙qk(t)) + c (qk(t)) − ˆc (qk(t)) = −kpxk(t) − kv ˙xk(t) + µk(t) xk(t) = qk(t) − qd(t), ˙xk(t) = ˙qk(t) − ˙qd(t). KVbc t.  (6) B= qd !:,  D (qk) = D (qd) + [∂D (qk) /∂qk]qd xk(t) + n1 h (qk, ˙qk) = h (qd, ˙qd) + [∂h (qk, ˙qk)/∂ ˙qk](qd, ˙qd) ˙xk(t) + [∂h (qk, ˙qk)/∂qk](qd, ˙qd) xk(t) + n2 c (qk) − ˆc (qk) = c (qd) − ˆc (qd) + [∂ (c(qk) − ˆc(qk))/∂qk]qd xk(t) + n3 (6) (7) (8) (9)
1 $&, : _‘d[#\eWXD 01$ n1, n3  ˙xk ], n2  ¨xk ].  (7)–(9) % (6),  R(t)¨xk(t) + ˆE(t) ˙xk(t) + ˆF (t)xk(t) + n ( ˙xk, ¨xk) + w(t) = − kpxk(t) − kv ˙xk(t) + µk(t) R(t) = D (qd(t)) , ˆE(t) = [∂h (qk, ˙qk)/∂ ˙qk](qd, ˙qd) , ˆF (t) = [∂D (qk)/∂qk]qd ¨qd(t) + [∂h (qk, ˙qk)/∂qk](qd, ˙qd) + [∂ (c(qk) − ˆc(qk))/∂qk]qd , w(t) = D (qd) ¨qd(t) + h (qd, ˙qd) + c (qd) − ˆc (qd) , n  ˙xk, ¨xk ]. cg (10) ] n, E E(t) = ˆE(t) + kv, F (t) = ˆF (t) + kp, uk(t) = µk(t) − w(t). R(t)¨xk(t) + E(t) ˙xk(t) + F (t)xk(t) = uk(t) Kawamura h";B5$%6851687, [ ˙xk(0) = ˙qk(0) − ˙qd(0) = 0, xk(0) = qk(0) − qd(0) = 0 >  9;+ 6 PD C‘Aa\NQK, bQKJ8; , 2QKBNALLQ, aN7 ;98bA. ] ek(t) = ˙yk(t), ?/2\ >$%: uk+1(t) = uk(t) + Lp(t)ek(t) + Ld(t)∆ek(t), k = 1, 2,··· , t ∈ [0, T ] (15) , ∆ek(t) = ek−1(t) − ek(t), Lp(t)Ld(t) c?3, e62c P CA d$%T"W\65$%AQK, 4> #Q‘,  98. ˆyk(λ,ξ) , rU 1[6] 6
168 , ρ1 = I + B(t) [Lp(t) − Ld(t)], ρ2 = B(t)Ld(t). vZ  (14) ek(t) = ˙yk(t), k = 1, 2,··· ,   ,  * * 1  2 + ek+1(t) = ek(t) + ˙yk+1(t) − ˙yk(t) = ek(t) + A(t)ˆyk(t) − B(t)F (t)ˆxk(t) + B(t)ˆuk(t) ˆyk(t) = yk+1(t) − yk(t), ˆxk(t) = xk+1(t) − xk(t), ˆuk(t) = uk+1(t) − uk(t). f (15),  ˆuk(t) = Lp(t)ek(t) + Ld(t) [ek−1(t) − ek(t)] = [Lp(t) − Ld(t)] ek(t) + Ld(t)ek−1(t)  (17) % (16), E ek+1(t) = [I + B(t) (Lp(t) − Ld(t))] ek(t) + B(t)Ld(t)ek−1(t) + A(t)ˆyk(t) − B(t)F (t)ˆxk(t) ] A(t) ≤ ˆa, B(t)F (t) ≤ ˆf , I + B(t) (Lp(t) − Ld(t)) ≤ ρ1, B(t)Ld(t) ≤ ρ2. 2 (18) gnf,  Y 1 Y 2 3g% (19),  ek+1(t) e ek+1(t) ≤ ρ1 ek(t) + ρ2 ek−1(t) + ˆaˆyk(t) + ˆf ˆxk(t) −λt ξk ≤ ρ1 ek(λ,ξ) + ρ2 ek−1(λ,ξ) + q(˜lξ)k + sˆuk(λ,ξ) ˆuk(λ,ξ) . (˜lξ)k, −1 λ bh ˆa + ˆfed λ (λ − a) −1 q = 2r ˆf + mh s = ˆa + ˆfed ] 2 (17) gnf,  Lp(t) − Ld(t) ≤ l1, Ld(t) ≤ l2, ˆuk(λ,ξ) ≤ l1 ek(λ,ξ) + l2 ek−1(λ,ξ) 31 (16) (17) (18) (19) (20) (21) (22)  (21) % (20),  −λt ek+1(t) e ek+1(λ,ξ) ≤ (ρ1 + sl1)ek(λ,ξ) + (ρ2 + sl2)ek−1(λ,ξ) + q(˜lξ)k ξk ≤ (ρ1 + sl1)ek(λ,ξ) + (ρ2 + sl2)ek−1(λ,ξ) + q(˜lξ)k  (22) ;Kh t ., (23) n (λ, ξ) f ξ > 1, 0 < ˜lξ < 1, F  λ + s (l1 + l2) → 0, ; ≤ [ρ1 + ρ2 + s (l1 + l2)] max ek(λ,ξ) ,ek−1(λ,ξ) + q(˜lξ)k ρ1 + ρ2 < 1 4 f h lim k→∞ ek+1(λ,ξ) = lim k→∞ ek(t) e −λt eλtξ ξk ek(t) = ek(λ,ξ) = 0 −k ≤ ek(λ,ξ) eλT ξ −k lim k→∞ ˙yk(t) = lim k→∞ ek(t) = 0, t ∈ [0, T ] (24) (25) (26) U 2  (15) ?3 Lp(t), Ld(t) jF ρ1 + ρ2 < 1, uk(t)  k  [0, T ] \D,  lim k→∞ vZ (21)  qk(t) − qd(t) = lim k→∞ ˆuk(λ,ξ) ≤ (l1 + l2) max ˙qk(t) − ˙qd(t) = 0, ek(λ,ξ) ,ek−1(λ,ξ) t ∈ [0, T ]. (27)
1 $&, : _‘d[#\eWXD 01$ 0 ≤ lim k→∞ ˆuk(t) ≤ (l1 + l2) max lim k→∞ ek(λ,ξ) , lim k→∞ ek−1(λ,ξ) ˆuk(t) = 0 t t 0 0 h {uk(t)}  k  [0, T ] \D. J lim k→∞ yk(t) ≤ yk(0) + ˙yk(s)ds yk(t) ≤ yk(0) + ˙yk(s)ds yk(t) ≤ ˆrˆlk + T ek(t) 0 ≤ lim k→∞ yk(t) ≤ lim k→∞ ˆrˆlk + T ek(t) 2 (30) gnf,  Of (13) ek(t) = ˙yk(t),  <@ f8 1 3g, A 169 (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) lim k→∞ ˙xk(t) = lim k→∞ yk(t) = 0 yk(t) = 0 lim k→∞ e − t 0 D(s)dsyk(t) e − t 0 D(s)ds ≤ M lim ≤ M. t k→∞ xk(t) ≤ xk(0) + ˙xk(s)ds 0 xk(t) = 0 lim k→∞ lim k→∞ qk(t) − qd(t) = lim k→∞ ˙qk(t) − ˙qd(t) = 0, t ∈ [0, T ] < O f (13), ÆA [ 5 w\] ⎞ ⎟⎠ = D (q) = ⎛ ⎜⎝ τ1 τ2 τ3 τ = 7Æ. in  (3) ?3L p7Y i!ig+, n? [6], .]jc. 2 −τ3 τ3 ˙q2 τ3 + τ2 cos q2 τ1 + τ3 + 2τ2 cos q2 τ3 + τ2 cos q2 ⎛ ⎜⎝ I1 + (m1/4 + m2) l2 1 2 ˙q1 ˙q2 + ˙q2 sin q2 τ2 , h (q, ˙q) = ⎞ ⎟⎠, mi, li, Di (i = 1, 2) L%Z i j‘,  1 sin q2 2 , m2l1l2/2 I2 + m2l2 2 4 l1 = l2 = 0.5m, m1 = m2 = 8kg, I1 = I 2 = 0.4kg · m2. T, 6
170  (11) ?3L R(t) =  ,  * * 1  2 + ˙xk(0) = ˙qk(0) − ˙qd(0) = 0, (−0.2)k 31 T , E(t) = ˆE(t) + kv = F (t) = ˆF (t) + kp = 3.8 + 2 cos t3 0.9 + cos t3 −5.4t2 sin t3 −0.9 0.9 cos t sin t3 0.9 + cos t3 , 1 cos t + 6t2 0 sin t3 + kv, −12t sin t3 −6t sin t3 − 2.7 −6t sin t3 8.1t4 cos t3 t2 cos t + 3t4 cos t3 + kp. ln kv = 1.5I, kp = I. n e t 0 G(s)ds = R(t), Lp(t) = −0.2I, Ld(t) = 0.1I, @ ρ1 + ρ2 < 1, jFD;. 6 uk+1(t) = uk(t) − 0.2 (R(t) ˙xk(t)) = uk(t) − 0.3 (R(t) ˙xk(t)) (R(t) ˙xk−1(t)) + 0.1 + 0.1 (R(t) ˙xk−1(t)) − (R(t) ˙xk(t)) , k = 1, 2,··· , t ∈ [0, 2] . L P $%?A$%2  (14) !, i 3gh 1–4 U. 0.25 0.2 0.15 0.1 0.05 0.25 0.2 0.15 0.1 0.05 0 1 2 4 6 8 10 12 14 0 1 2 4 6 8 10 12 14 (k) (k) a 1 P  y 14 dfghzij{klmn a 2 o y 14 dfghzij{klmn 0.25 0.2 0.15 0.1 0.05 0.25 0.2 0.15 0.1 0.05 0 1 2 4 6 8 10 12 14 0 1 2 4 6 8 10 12 14 (k) (k) a 3 P  y 14 dfghziklmn a 4 o y 14 dfghziklmn .i3gmA, k P $%;. 12 5$%HJ8AAn D , >>$%l 8 5$%J8AAD , [25101 6’. m?"Nno  $%68G, $% AD,  .
1 6 \} $&, : _‘d[#\eWXD 01$ 171 55  01’, .2  , O2 !, LJ Kawamura ";B5$%6851687P, $%64;>D84, A>$%2H !, N> _#AQ‘, or P Ds#p PD UN7 ;98bA. i3gZt "N. stu [1] , uv, w. _‘d[x01$ [J]. +" , 1999, 25(5): 716–718. Huang B J, Sun M X, Zhang X Z. Iterative learning control algorithms with initial update action[J]. Acta Automatica Sinica, 1999, 25(5): 716–718. [2] lm, um , lxn. 01‘yorzq#)*rs [J]. s{#% +", 2001, 20(4): 1418. Yang X F, Fan X P, Yang S Y. Initial value researching of iterative learning and its application in robot[J]. Computing Technology and Automation, 2001, 20(4): 1418. [3] uv. ‘y01$ [J]. $t, 2007, 22(8): 848–852. Sun M X. Iterative learning control with initial state learning[J]. Control and Decision, 2007, 22(8): 848–852. [4] yu, u|.  2-D ,*1,‘dwxy,xw$ [J]. +"%rs, 2007, 26(7): 16– 18. Zhong Z W, Hao X Q. An open and closed-loop iterative learning control of linear system based on the 2-D system theory[J]. Techniques of Automation Applications, 2007, 26(7): 16–18. [5] Kawamura S, Miyazaki F, Arimoto S. Realization of robot motion based on a learning method[J]. IEEE Trans on Systems Man and Cybemetics, 1988, 18(3): 126–134. [6] zxz,  , z{x. { n yz+) n y|}#)*,$({ [J]. +" , 2002, 28(2): 177– 182. Xie S L, Tian S P, Xie Z D. Learning control scheme for n joint robotic systems with n actuators[J]. Acta Automatica Sinica, 2002, 28(2): 177–182. [7] Sun M X, He X X, Chen B Y. Repetitive learning control for time-varying robotic systems: A hybrid learning scheme[J]. Acta Automatica Sinica, 2007, 33(11): 1189–1195. [8] Chi R H, Hou Z S. Dual-stage optimal iterative learning control for nonlinear non-affine discrete-time systems[J]. Acta Automatica Sinica, 2007, 33(10): 1061–1065. [9] Ahn H S, Chen Y Q, Moore K L. Iterative learning control: Brief survey and categorization[J]. IEEE Transaction on System, Man and Cybernetics, 2007, 37(6): 1099–1121. [10] Song Z Q, Mao J Q, Dai S W. First-order D-type iterative learning control for nonlinear systems with unknown relative degree[J]. Acta Automatica Sinica, 2005, 31(4): 555–561. [11] u|, ~. |xy,q}‘}x D ~01$ [J]. ,~  , 2008, 20(24): 6767–6770. Sun Y, Li Z A. Open-loop D-type iterative learning control for a class of nonlinear systems with arbitrary initial value[J]. Journal of System Simulation, 2008, 20(24): 6767–6770.
分享到:
收藏