Cover
Copyright
Contents
Preface
1 Introduction
2 Classifiers Based on Bayes Decision Theory
3 Linear Classifiers
4 Nonlinear Classifiers
5 Feature Selection
6 Feature Generation I: Data Transformation and Dimensionality Reduction
7 Feature Generation II
8 Template Matching
9 Context-Dependent Classification
10 Supervised Learning: The Epilogue
11 Clustering: Basic Concepts
12 Clustering Algorithms I: Sequential Algorithms
13 Clustering Algorithms II: Hierarchical Algorithms
14 Clustering Algorithms III: Schemes Based on Function Optimization
15 Clustering Algorithms IV
16 Cluster Validity
Appendix A Hints from Probability and Statistics
Appendix B Linear Algebra Basics
Appendix C Cost Function Optimization
Appendix D Basic Definitions from Linear Systems Theory
Index