logo资料库

Elementary_probability_theory.pdf

第1页 / 共411页
第2页 / 共411页
第3页 / 共411页
第4页 / 共411页
第5页 / 共411页
第6页 / 共411页
第7页 / 共411页
第8页 / 共411页
资料共411页,剩余部分请下载后查看
1
2
3
4
5
6
7
8
9
Binder1.pdf
v
vi
vii
viii
ix
x
xi
xii
xiii
xiv
Binder1.pdf
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Binder1.pdf
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
90
91
92
93
94
95
96
97
98
99
Binder2.pdf
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
Binder3.pdf
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
Binder4.pdf
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
Binder5.pdf
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
Binder6.pdf
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
Doob Polya Kolmogorov Cramer
Borel Levy Keynes Feller
Contents PREFACE TO THE FOURTH EDITION PROLOGUE TO INTRODUCTION TO MATHEMATICAL FINANCE 1 SET 1.1 Sample sets 1.2 Operations with sets 1.3 Various relations 1.4 Indicator Exercises 2 PROBABILITY 2.1 Examples of probability 2.2 Definition and illustrations 2.3 Deductions from the axioms 2.4 Independent events 2.5 Arithmetical density Exercises 3 COUNTING 3.1 Fundamental rule 3.2 Diverse ways of sampling 3.3 Allocation models; binomial coefficients 3.4 How to solve it Exercises xi xiii 1 1 3 7 13 17 20 20 24 31 35 39 42 46 46 49 55 62 70 vii
viii Contents 4 RANDOM VARIABLES 4.1 What is a random variable? 4.2 How do random variables come about? 4.3 Distribution and expectation 4.4 Integer-valued random variables 4.5 Random variables with densities 4.6 General case Exercises APPENDIX 1: BOREL FIELDS AND GENERAL RANDOM VARIABLES 5 CONDITIONING AND INDEPENDENCE 5.1 Examples of conditioning 5.2 Basic formulas 5.3 Sequential sampling 5.4 P´olya’s urn scheme 5.5 Independence and relevance 5.6 Genetical models Exercises 6 MEAN, VARIANCE, AND TRANSFORMS 6.1 Basic properties of expectation 6.2 The density case 6.3 Multiplication theorem; variance and covariance 6.4 Multinomial distribution 6.5 Generating function and the like Exercises 7 POISSON AND NORMAL DISTRIBUTIONS 7.1 Models for Poisson distribution 7.2 Poisson process 7.3 From binomial to normal 7.4 Normal distribution 7.5 Central limit theorem 7.6 Law of large numbers Exercises APPENDIX 2: STIRLING’S FORMULA AND DE MOIVRE–LAPLACE’S THEOREM 74 74 78 84 90 95 105 109 115 117 117 122 131 136 141 152 157 164 164 169 173 180 187 195 203 203 211 222 229 233 239 246 251
Contents ix 8 FROM RANDOM WALKS TO MARKOV CHAINS 8.1 Problems of the wanderer or gambler 8.2 Limiting schemes 8.3 Transition probabilities 8.4 Basic structure of Markov chains 8.5 Further developments 8.6 Steady state 8.7 Winding up (or down?) Exercises APPENDIX 3: MARTINGALE 9 MEAN-VARIANCE PRICING MODEL 9.1 An investments primer 9.2 Asset return and risk 9.3 Portfolio allocation 9.4 Diversification 9.5 Mean-variance optimization 9.6 Asset return distributions 9.7 Stable probability distributions Exercises APPENDIX 4: PARETO AND STABLE LAWS 10 OPTION PRICING THEORY 10.1 Options basics 10.2 Arbitrage-free pricing: 1-period model 10.3 Arbitrage-free pricing: N-period model 10.4 Fundamental asset pricing theorems Exercises GENERAL REFERENCES ANSWERS TO PROBLEMS VALUES OF THE STANDARD NORMAL DISTRIBUTION FUNCTION INDEX 254 254 261 266 275 284 291 303 314 325 329 329 331 335 336 337 346 348 351 355 359 359 366 372 376 377 379 381 393 397
Preface to the Fourth Edition In this edition two new chapters, 9 and 10, on mathematical finance are added. They are written by Dr. Farid AitSahlia, ancien ´el`eve, who has taught such a course and worked on the research staff of several industrial and financial institutions. The new text begins with a meticulous account of the uncommon vocab- ulary and syntax of the financial world; its manifold options and actions, with consequent expectations and variations, in the marketplace. These are then expounded in clear, precise mathematical terms and treated by the methods of probability developed in the earlier chapters. Numerous graded and motivated examples and exercises are supplied to illustrate the appli- cability of the fundamental concepts and techniques to concrete financial problems. For the reader whose main interest is in finance, only a portion of the first eight chapters is a “prerequisite” for the study of the last two chapters. Further specific references may be scanned from the topics listed in the Index, then pursued in more detail. I have taken this opportunity to fill a gap in Section 8.1 and to expand Appendix 3 to include a useful proposition on martingale stopped at an optional time. The latter notion plays a basic role in more advanced finan- cial and other disciplines. However, the level of our compendium remains elementary, as befitting the title and scheme of this textbook. We have also included some up-to-date financial episodes to enliven, for the beginners, the stratified atmosphere of “strictly business”. We are indebted to Ruth Williams, who read a draft of the new chapters with valuable suggestions for improvement; to Bernard Bru and Marc Barbut for information on the Pareto-L´evy laws originally designed for income distributions. It is hoped that a readable summary of this renowned work may be found in the new Appendix 4. Kai Lai Chung August 3, 2002 xi
分享到:
收藏