logo资料库

Advanced Applied Deep Learning.pdf

第1页 / 共294页
第2页 / 共294页
第3页 / 共294页
第4页 / 共294页
第5页 / 共294页
第6页 / 共294页
第7页 / 共294页
第8页 / 共294页
资料共294页,剩余部分请下载后查看
Table of Contents
About the Author
About the Technical Reviewer
Acknowledgments
Introduction
Chapter 1: Introduction and Development Environment Setup
GitHub Repository and Companion Website
Mathematical Level Required
Python Development Environment
Google Colab
Benefits and Drawbacks to Google Colab
Anaconda
Installing TensorFlow the Anaconda Way
Local Jupyter Notebooks
Benefits and Drawbacks to Anaconda
Docker Image
Benefits and Drawbacks to a Docker Image
Which Option Should You Choose?
Chapter 2: TensorFlow: Advanced Topics
Tensorflow Eager Execution
Enabling Eager Execution
Polynomial Fitting with Eager Execution
MNIST Classification with Eager Execution
TensorFlow and Numpy Compatibility
Hardware Acceleration
Checking the Availability of the GPU
Device Names
Explicit Device Placement
GPU Acceleration Demonstration: Matrix Multiplication
Effect of GPU Acceleration on the MNIST Example
Training Only Specific Layers
Training Only Specific Layers: An Example
Removing Layers
Keras Callback Functions
Custom Callback Class
Example of a Custom Callback Class
Save and Load Models
Save Your Weights Manually
Saving the Entire Model
Dataset Abstraction
Iterating Over a Dataset
Simple Batching
Simple Batching with the MNIST Dataset
Using tf.data.Dataset in Eager Execution Mode
Conclusions
Chapter 3: Fundamentals of Convolutional Neural Networks
Kernels and Filters
Convolution
Examples of Convolution
Pooling
Padding
Building Blocks of a CNN
Convolutional Layers
Pooling Layers
Stacking Layers Together
Number of Weights in a CNN
Convolutional Layer
Pooling Layer
Dense Layer
Example of a CNN: MNIST Dataset
Visualization of CNN Learning
Brief Digression: keras.backend.function()
Effect of Kernels
Effect of Max-Pooling
Chapter 4: Advanced CNNs and Transfer Learning
Convolution with Multiple Channels
History and Basics of Inception Networks
Inception Module: Naïve Version
Number of Parameters in the Naïve Inception Module
Inception Module with Dimension Reduction
Multiple Cost Functions: GoogLeNet
Example of Inception Modules in Keras
Digression: Custom Losses in Keras
How To Use Pre-Trained Networks
Transfer Learning: An Introduction
A Dog and Cat Problem
Classical Approach to Transfer Learning
Experimentation with Transfer Learning
Chapter 5: Cost Functions and Style Transfer
Components of a Neural Network Model
Training Seen as an Optimization Problem
A Concrete Example: Linear Regression
The Cost Function
Mathematical Notation
Typical Cost Functions
Mean Square Error
Intuitive Explanation
MSE as the Second Moment of a Moment-Generating Function
Cross-Entropy
Self-Information or Suprisal of an Event
Suprisal Associated with an Event X
Cross-Entropy
Cross-Entropy for Binary Classification
Cost Functions: A Final Word
Neural Style Transfer
The Mathematics Behind NST
An Example of Style Transfer in Keras
NST with Silhouettes
Masking
Chapter 6: Object Classification: An Introduction
What Is Object Localization?
Most Important Available Datasets
Intersect Over Union (IoU)
A Naïve Approach to Solving Object Localization (Sliding Window Approach)
Problems and Limitations the with Sliding Window Approach
Classification and Localization
Region-Based CNN (R-CNN)
Fast R-CNN
Faster R-CNN
Chapter 7: Object Localization: An Implementation in Python
The You Only Look Once (YOLO) Method
How YOLO Works
Dividing the Image Into Cells
YOLOv2 (Also Known As YOLO9000)
YOLOv3
Non-Maxima Suppression
Loss Function
Classification Loss
Localization Loss
Confidence Loss
Total Loss Function
YOLO Implementation in Python and OpenCV
Darknet Implementation of YOLO
Testing Object Detection with Darknet
Training a Model for YOLO for Your Specific Images
Concluding Remarks
Chapter 8: Histology Tissue Classification
Data Analysis and Preparation
Model Building
Data Augmentation
Horizontal and Vertical Shifts
Flipping Images Vertically
Randomly Rotating Images
Zooming in Images
Putting All Together
VGG16 with Data Augmentation
The fit() Function
The fit_generator() Function
The train_on_batch() Function
Training the Network
And Now Have Fun…
Index
分享到:
收藏