logo资料库

高阶谱书Higher-Order Spectral Analysis Toolbox.pdf

第1页 / 共258页
第2页 / 共258页
第3页 / 共258页
第4页 / 共258页
第5页 / 共258页
第6页 / 共258页
第7页 / 共258页
第8页 / 共258页
资料共258页,剩余部分请下载后查看
About the Authors
Ananthram Swami
Jerry M. Mendel
Chrysostomos L. (Max) Nikias
About the Authors
Tutorial
Introduction
Polyspectra and Linear Processes
Introduction
Definitions
Why Do We Need Higher-Order Statistics?
Bias and Variance of an Estimator
Estimating Cumulants
Examples
Estimating Polyspectra and Cross-polyspectra
Estimating the Power Spectrum
Estimating Bispectra and Cross-Bispectra
Examples
Examples
Estimating Bicoherence
Examples
Testing for Linearity and Gaussianity
Examples
Parametric Estimators, ARMA Models
MA Models
Examples
AR Models
Examples
ARMA Models
Examples
AR Order Determination
Examples
MA Order Determination
Examples
Linear Processes: Impulse Response Estimation
The Polycepstral Methods
Examples
Examples
The Matsuoka-Ulrych Algorithm
Examples
Linear Processes: Theoretical Cumulants and Polysp...
Examples
Summary
Linear Prediction Models
Levinson Recursion
Trench Recursion
Examples
Deterministic Formulation of FBLS
Adaptive Linear Prediction
RIV Algorithm: Transversal Form
Examples
RIV Algorithm: Double-Lattice Form
Examples
Summary
Harmonic Processes and DOA
Resolution and Variance
AR and ARMA Models
Pisarenko’s Method
Multiple Signal Classification (MUSIC)
Minimum-Norm Method
ESPRIT
Criterion-Based Estimators
Cumulant-Based Estimators
Examples
Examples
Summary
Nonlinear Processes
Solution Using Cross-Bispectra
Examples
Solution Using FTs
Examples
Quadratic Phase Coupling
Examples
Summary
Time-Frequency Distributions
Wigner Spectrum
Examples
Examples
Wigner Bispectrum
Examples
Examples
Wigner Trispectrum
Examples
Examples
Summary
Time-Delay Estimation
A Cross-Correlation Based Method
Examples
A Cross-Cumulant Based Method
Examples
A Hologram Based Method
Examples
Summary
Case Studies
Sunspot Data
Canadian Lynx Data
Examples
A Classification Example
Laughter Data
Pitfalls and Tricks of the Trade
Data Files
References
Reference
Function Tables
Higher-Order Spectrum Estimation: Conventional Met...
Higher-Order Spectrum Estimation: Parametric Metho...
Quadratic Phase Coupling (QPC)
Second-Order Volterra Systems
Harmonic Retrieval
Time-Delay Estimation (TDE)
Array Processing: Direction of Arrival (DOA)
Adaptive Linear Prediction
Impulse Response (IR), Magnitude and Phase Retriev...
Time-Frequency Estimates
Utilities
Demo
Miscellaneous
Prompting
Guided tour
Addenda
armaqs
armarts
armasyn
arorder
arrcest
biceps
bicepsf
bicoher
bicoherx
bispecd
bispecdx
bispeci
bispect
cum2x
cum3x
cum4x
cumest
cumtrue
doa
doagen
glstat
harmest
harmgen
hosademo
hosahelp
hprony
ivcal
maest
maorder
matul
nlgen
nlpow
nltick
pickpeak
qpcgen
qpctor
rivdl
rivtr
rpiid
tde
tdeb
tdegen
tder
tls
trench
trispect
wig2
wig2c
wig3
wig3c
wig4
wig4c
Higher-Order Spectral Analysis Toolbox For Use with MATLAB® Ananthram Swami Jerry M. Mendel Chrysostomos L. (Max) Nikias Computation Visualization Programming User’s Guide Version 2
% FAX) @ How to Contact The MathWorks: 508-647-7000 508-647-7001 The MathWorks, Inc. 24 Prime Park Way Natick, MA 01760-1500 Phone Fax Mail http://www.mathworks.com Web ftp.mathworks.com comp.soft-sys.matlab Anonymous FTP server Newsgroup support@mathworks.com suggest@mathworks.com bugs@mathworks.com doc@mathworks.com subscribe@mathworks.com service@mathworks.com info@mathworks.com Technical support Product enhancement suggestions Bug reports Documentation error reports Subscribing user registration Order status, license renewals, passcodes Sales, pricing, and general information Higher-Order Spectral Analysis Toolbox User’s Guide COPYRIGHT 1984 - 1998 by The MathWorks, Inc. All Rights Reserved. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro- duced in any form without prior written consent from The MathWorks, Inc. U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S. Government, the following shall apply: (a) For units of the Department of Defense: the Government shall have only the rights specified in the license under which the commercial computer software or commercial software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of, the computer software and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo- sure are as set forth in Clause 52.227-19 (c)(2) of the FAR. MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow and Target Language Compiler are trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders. Printing History: May 1993 First printing September 1995 Second printing January 1998 Third printing
Contents About the Authors Tutorial 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Polyspectra and Linear Processes . . . . . . . . . . . . . . . . . . . . . . 1-4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 Why Do We Need Higher-Order Statistics? . . . . . . . . . . . . . . . 1-10 Bias and Variance of an Estimator . . . . . . . . . . . . . . . . . . . . . 1-11 Estimating Cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 Estimating Polyspectra and Cross-polyspectra . . . . . . . . . . . . 1-15 Estimating the Power Spectrum . . . . . . . . . . . . . . . . . . . . . 1-15 Estimating Bispectra and Cross-Bispectra . . . . . . . . . . . . . 1-16 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19 Estimating Bicoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20 Testing for Linearity and Gaussianity . . . . . . . . . . . . . . . . . . . 1-22 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24 i
Parametric Estimators, ARMA Models . . . . . . . . . . . . . . . . . . 1-26 MA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30 AR Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-32 ARMA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-32 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34 AR Order Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35 MA Order Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-37 Linear Processes: Impulse Response Estimation . . . . . . . . . . . 1-37 The Polycepstral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-38 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-39 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41 The Matsuoka-Ulrych Algorithm . . . . . . . . . . . . . . . . . . . . . 1-41 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-42 Linear Processes: Theoretical Cumulants and Polyspectra . . 1-43 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-45 Linear Prediction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-47 Levinson Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-47 Trench Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-49 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50 Deterministic Formulation of FBLS . . . . . . . . . . . . . . . . . . . . . 1-53 Adaptive Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54 RIV Algorithm: Transversal Form . . . . . . . . . . . . . . . . . . . . 1-56 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57 RIV Algorithm: Double-Lattice Form . . . . . . . . . . . . . . . . . . 1-58 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-60 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-61 Harmonic Processes and DOA . . . . . . . . . . . . . . . . . . . . . . . . . 1-62 Resolution and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-65 AR and ARMA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-66 Pisarenko’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-67 Multiple Signal Classification (MUSIC) . . . . . . . . . . . . . . . . . . 1-68 Minimum-Norm Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-69 ESPRIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-70 ii Contents
Criterion-Based Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-72 Cumulant-Based Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-74 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-75 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-77 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-79 Nonlinear Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-80 Solution Using Cross-Bispectra . . . . . . . . . . . . . . . . . . . . . . . . 1-80 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-82 Solution Using FTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-82 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-83 Quadratic Phase Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-84 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-87 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-88 Time-Frequency Distributions . . . . . . . . . . . . . . . . . . . . . . . . 1-89 Wigner Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-90 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-94 Wigner Bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-94 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-96 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-97 Wigner Trispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-98 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-99 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-100 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-100 Time-Delay Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-101 A Cross-Correlation Based Method . . . . . . . . . . . . . . . . . . . . . 1-101 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-103 A Cross-Cumulant Based Method . . . . . . . . . . . . . . . . . . . . . . 1-103 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-105 A Hologram Based Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-105 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-107 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-107 iii
Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-108 Sunspot Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-108 Canadian Lynx Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-114 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-114 A Classification Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-120 Laughter Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-122 Pitfalls and Tricks of the Trade . . . . . . . . . . . . . . . . . . . . . . . . 1-131 Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-134 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139 2 Reference Function Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Higher-Order Spectrum Estimation: Conventional Methods . . 2-2 Higher-Order Spectrum Estimation: Parametric Methods . . . . 2-3 Quadratic Phase Coupling (QPC) . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Second-Order Volterra Systems . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Harmonic Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Time-Delay Estimation (TDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Array Processing: Direction of Arrival (DOA) . . . . . . . . . . . . . . 2-4 Adaptive Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 Impulse Response (IR), Magnitude and Phase Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 Time-Frequency Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Prompting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Guided tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Addenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 iv Contents
About the Authors
About the Authors About the Authors Ananthram Swami Ananthram Swami received his B.Tech, M.S. and Ph.D. degrees in electrical engineering from the Indian Institute of Technology at Bombay, Rice University, and the University of Southern California, respectively. He has held positions with Unocal, USC, CS-3 and Malgudi Systems. He is currently a Senior SCEEE Research Fellow at the Army Research Lab, Adelphi, MD. Dr. Swami has published over fifty journal and conference papers in the areas of modeling and parameter estimation of non-Gaussian processes. He is co-organizer and co-chair of the Eighth IEEE Signal Processing Workshop on Statistical Signal and Array Processing, Corfu, Greece (June 1996). Jerry M. Mendel Jerry Mendel received his B.S. degree in Mechanical Engineering in 1959, his M.S. in 1960, and his Ph.D. in 1963 in Electrical Engineering from the Polytechnic Institute of Brooklyn, NY. Currently he is Professor of Electrical Engineering at USC in Los Angeles. Dr. Mendel is a Fellow of the IEEE, a Distinguished Member of the IEEE Control Systems Society, a member of Tau Beta Pi, Pi Tau Sigma, and Sigma Xi, and a registered Professional Control Systems Engineer in California. He has authored more than 300 technical papers, three textbooks and four other books related to his research in estimation theory, deconvolution, higher-order statistics, neural networks and fuzzy logic. Chrysostomos L. (Max) Nikias Chrysostomos L. (Max) Nikias received his B.S. degree in Electrical and Mechanical Engineering from the National Technical University of Athens, Greece and his M.S. and Ph.D. degrees in Electrical Engineering from the State University of New York at Buffalo in 1980 and 1982. Currently he is a Professor of Electrical Engineering at USC in Los Angeles, where he is also Director of CRASP and Associate Dean of Academic Research. Dr. Nikias is a Fellow of the IEEE. He is the author of over 150 journal and conference papers, two textbooks, a monograph, and four patents. He is co-author of the textbook Higher-Order Spectral Analysis: A Nonlinear Signal Processing Framework, Prentice-Hall, Inc. 1993. vi
分享到:
收藏