logo资料库

python实现差分隐私Laplace机制详解.pdf

第1页 / 共2页
第2页 / 共2页
资料共2页,全文预览结束
python实现差分隐私 实现差分隐私Laplace机制详解 机制详解 Laplace分布定义: 分布定义: 下面先给出Laplace分布实现代码: 下面先给出 分布实现代码: import matplotlib.pyplot as plt import numpy as np def laplace_function(x,beta): result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta)) return result #在-5到5之间等间隔的取10000个数 x = np.linspace(-5,5,10000) y1 = [laplace_function(x_,0.5) for x_ in x] y2 = [laplace_function(x_,1) for x_ in x] y3 = [laplace_function(x_,2) for x_ in x] plt.plot(x,y1,color='r',label='beta:0.5') plt.plot(x,y2,color='g',label='beta:1') plt.plot(x,y3,color='b',label='beta:2') plt.title("Laplace distribution") plt.legend() plt.show() 效果图如下: 接下来给出Laplace机制实现:
Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。 Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。 import numpy as np def noisyCount(sensitivety,epsilon): beta = sensitivety/epsilon u1 = np.random.random() u2 = np.random.random() if u1 <= 0.5: n_value = -beta*np.log(1.-u2) else: n_value = beta*np.log(u2) print(n_value) return n_value def laplace_mech(data,sensitivety,epsilon): for i in range(len(data)): data[i] += noisyCount(sensitivety,epsilon) return data if __name__ =='__main__': x = [1.,1.,0.] sensitivety = 1 epsilon = 1 data = laplace_mech(x,sensitivety,epsilon) for j in data: print(j) 以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多 支持软件开发网。 您可能感兴趣的文章:Python如何使用Gitlab API实现批量的合并分支Python-Flask:动态创建表的示例详解python flask搭建 您可能感兴趣的文章 web应用教程Python django搭建layui提交表单,表格,图标的实例简单了解python元组tuple相关原理python函数声明和调用定义 及原理详解Python 异步协程函数原理及实例详解Python中使用gflags实例及原理解析
分享到:
收藏