python实现差分隐私
实现差分隐私Laplace机制详解
机制详解
Laplace分布定义:
分布定义:
下面先给出Laplace分布实现代码:
下面先给出
分布实现代码:
import matplotlib.pyplot as plt
import numpy as np
def laplace_function(x,beta):
result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta))
return result
#在-5到5之间等间隔的取10000个数
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,0.5) for x_ in x] y2 = [laplace_function(x_,1) for x_ in x] y3 = [laplace_function(x_,2) for x_ in x]
plt.plot(x,y1,color='r',label='beta:0.5')
plt.plot(x,y2,color='g',label='beta:1')
plt.plot(x,y3,color='b',label='beta:2')
plt.title("Laplace distribution")
plt.legend()
plt.show()
效果图如下:
接下来给出Laplace机制实现:
Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。
Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。
import numpy as np
def noisyCount(sensitivety,epsilon):
beta = sensitivety/epsilon
u1 = np.random.random()
u2 = np.random.random()
if u1 <= 0.5:
n_value = -beta*np.log(1.-u2)
else:
n_value = beta*np.log(u2)
print(n_value)
return n_value
def laplace_mech(data,sensitivety,epsilon):
for i in range(len(data)):
data[i] += noisyCount(sensitivety,epsilon)
return data
if __name__ =='__main__':
x = [1.,1.,0.] sensitivety = 1
epsilon = 1
data = laplace_mech(x,sensitivety,epsilon)
for j in data:
print(j)
以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多
支持软件开发网。
您可能感兴趣的文章:Python如何使用Gitlab API实现批量的合并分支Python-Flask:动态创建表的示例详解python flask搭建
您可能感兴趣的文章
web应用教程Python django搭建layui提交表单,表格,图标的实例简单了解python元组tuple相关原理python函数声明和调用定义
及原理详解Python 异步协程函数原理及实例详解Python中使用gflags实例及原理解析