logo资料库

Planning Algorithms.pdf

第1页 / 共1023页
第2页 / 共1023页
第3页 / 共1023页
第4页 / 共1023页
第5页 / 共1023页
第6页 / 共1023页
第7页 / 共1023页
第8页 / 共1023页
资料共1023页,剩余部分请下载后查看
Preface
I Introductory Material
Introduction
Planning to Plan
Motivational Examples and Applications
Basic Ingredients of Planning
Algorithms, Planners, and Plans
Organization of the Book
Discrete Planning
Introduction to Discrete Feasible Planning
Searching for Feasible Plans
Discrete Optimal Planning
Using Logic to Formulate Discrete Planning
Logic-Based Planning Methods
II Motion Planning
Geometric Representations and Transformations
Geometric Modeling
Rigid-Body Transformations
Transforming Kinematic Chains of Bodies
Transforming Kinematic Trees
Nonrigid Transformations
The Configuration Space
Basic Topological Concepts
Defining the Configuration Space
Configuration Space Obstacles
Closed Kinematic Chains
Sampling-Based Motion Planning
Distance and Volume in C-Space
Sampling Theory
Collision Detection
Incremental Sampling and Searching
Rapidly Exploring Dense Trees
Roadmap Methods for Multiple Queries
Combinatorial Motion Planning
Introduction
Polygonal Obstacle Regions
Cell Decompositions
Computational Algebraic Geometry
Complexity of Motion Planning
Extensions of Basic Motion Planning
Time-Varying Problems
Multiple Robots
Mixing Discrete and Continuous Spaces
Planning for Closed Kinematic Chains
Folding Problems in Robotics and Biology
Coverage Planning
Optimal Motion Planning
Feedback Motion Planning
Motivation
Discrete State Spaces
Vector Fields and Integral Curves
Complete Methods for Continuous Spaces
Sampling-Based Methods for Continuous Spaces
III Decision-Theoretic Planning
Basic Decision Theory
Preliminary Concepts
A Game Against Nature
Two-Player Zero-Sum Games
Nonzero-Sum Games
Decision Theory Under Scrutiny
Sequential Decision Theory
Introducing Sequential Games Against Nature
Algorithms for Computing Feedback Plans
Infinite-Horizon Problems
Reinforcement Learning
Sequential Game Theory
Continuous State Spaces
Sensors and Information Spaces
Discrete State Spaces
Derived Information Spaces
Examples for Discrete State Spaces
Continuous State Spaces
Examples for Continuous State Spaces
Computing Probabilistic Information States
Information Spaces in Game Theory
Planning Under Sensing Uncertainty
General Methods
Localization
Environment Uncertainty and Mapping
Visibility-Based Pursuit-Evasion
Manipulation Planning with Sensing Uncertainty
IV Planning Under Differential Constraints
Differential Models
Velocity Constraints on the Configuration Space
Phase Space Representation of Dynamical Systems
Basic Newton-Euler Mechanics
Advanced Mechanics Concepts
Multiple Decision Makers
Sampling-Based Planning Under Differential Constraints
Introduction
Reachability and Completeness
Sampling-Based Motion Planning Revisited
Incremental Sampling and Searching Methods
Feedback Planning Under Differential Constraints
Decoupled Planning Approaches
Gradient-Based Trajectory Optimization
System Theory and Analytical Techniques
Basic System Properties
Continuous-Time Dynamic Programming
Optimal Paths for Some Wheeled Vehicles
Nonholonomic System Theory
Steering Methods for Nonholonomic Systems
i
ii PLANNING ALGORITHMS Steven M. LaValle University of Illinois Copyright Steven M. LaValle 2006 Available for downloading at http://planning.cs.uiuc.edu/ Published by Cambridge University Press
iii For Tammy, and my sons, Alexander and Ethan
iv
Contents Preface I Introductory Material ix 1 1 Introduction 3 3 1.1 Planning to Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Motivational Examples and Applications . . . . . . . . . . . . . . . 5 1.3 Basic Ingredients of Planning . . . . . . . . . . . . . . . . . . . . . 17 1.4 Algorithms, Planners, and Plans . . . . . . . . . . . . . . . . . . . . 19 1.5 Organization of the Book . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Discrete Planning 27 Introduction to Discrete Feasible Planning . . . . . . . . . . . . . . 28 2.1 2.2 Searching for Feasible Plans . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Discrete Optimal Planning . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Using Logic to Formulate Discrete Planning . . . . . . . . . . . . . 57 2.5 Logic-Based Planning Methods . . . . . . . . . . . . . . . . . . . . 63 II Motion Planning 77 3 Geometric Representations and Transformations 81 3.1 Geometric Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 Rigid-Body Transformations . . . . . . . . . . . . . . . . . . . . . . 92 3.3 Transforming Kinematic Chains of Bodies . . . . . . . . . . . . . . 100 3.4 Transforming Kinematic Trees . . . . . . . . . . . . . . . . . . . . . 112 3.5 Nonrigid Transformations . . . . . . . . . . . . . . . . . . . . . . . 120 4 The Configuration Space 127 4.1 Basic Topological Concepts . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Defining the Configuration Space . . . . . . . . . . . . . . . . . . . 145 4.3 Configuration Space Obstacles . . . . . . . . . . . . . . . . . . . . . 155 4.4 Closed Kinematic Chains . . . . . . . . . . . . . . . . . . . . . . . . 167 v
vi CONTENTS 185 5 Sampling-Based Motion Planning 5.1 Distance and Volume in C-Space . . . . . . . . . . . . . . . . . . . 186 5.2 Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.3 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Incremental Sampling and Searching . . . . . . . . . . . . . . . . . 217 5.4 5.5 Rapidly Exploring Dense Trees . . . . . . . . . . . . . . . . . . . . 228 5.6 Roadmap Methods for Multiple Queries . . . . . . . . . . . . . . . . 237 6 Combinatorial Motion Planning 249 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.1 . . . . . . . . . . . . . . . . . . . . . . 251 6.2 Polygonal Obstacle Regions 6.3 Cell Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 264 6.4 Computational Algebraic Geometry . . . . . . . . . . . . . . . . . . 280 6.5 Complexity of Motion Planning . . . . . . . . . . . . . . . . . . . . 298 7 Extensions of Basic Motion Planning 311 . . . . . . . . . . . . . . . . . . . . . . . . 311 7.1 Time-Varying Problems 7.2 Multiple Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 7.3 Mixing Discrete and Continuous Spaces . . . . . . . . . . . . . . . . 327 7.4 Planning for Closed Kinematic Chains . . . . . . . . . . . . . . . . 337 7.5 Folding Problems in Robotics and Biology . . . . . . . . . . . . . . 347 7.6 Coverage Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 7.7 Optimal Motion Planning . . . . . . . . . . . . . . . . . . . . . . . 357 8 Feedback Motion Planning 369 8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 8.2 Discrete State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 371 8.3 Vector Fields and Integral Curves . . . . . . . . . . . . . . . . . . . 381 8.4 Complete Methods for Continuous Spaces . . . . . . . . . . . . . . 398 8.5 Sampling-Based Methods for Continuous Spaces . . . . . . . . . . . 412 III Decision-Theoretic Planning 433 9 Basic Decision Theory 437 9.1 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 438 9.2 A Game Against Nature . . . . . . . . . . . . . . . . . . . . . . . . 446 9.3 Two-Player Zero-Sum Games . . . . . . . . . . . . . . . . . . . . . 459 9.4 Nonzero-Sum Games . . . . . . . . . . . . . . . . . . . . . . . . . . 468 9.5 Decision Theory Under Scrutiny . . . . . . . . . . . . . . . . . . . . 477 10 Sequential Decision Theory 495 10.1 Introducing Sequential Games Against Nature . . . . . . . . . . . . 496 10.2 Algorithms for Computing Feedback Plans . . . . . . . . . . . . . . 508
CONTENTS vii 10.3 Infinite-Horizon Problems . . . . . . . . . . . . . . . . . . . . . . . 522 10.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 527 10.5 Sequential Game Theory . . . . . . . . . . . . . . . . . . . . . . . . 536 10.6 Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . . 551 11 Sensors and Information Spaces 559 11.1 Discrete State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 561 11.2 Derived Information Spaces . . . . . . . . . . . . . . . . . . . . . . 571 11.3 Examples for Discrete State Spaces . . . . . . . . . . . . . . . . . . 581 11.4 Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . . 589 . . . . . . . . . . . . . . . . 598 11.5 Examples for Continuous State Spaces 11.6 Computing Probabilistic Information States . . . . . . . . . . . . . 614 11.7 Information Spaces in Game Theory . . . . . . . . . . . . . . . . . 619 12 Planning Under Sensing Uncertainty 633 12.1 General Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 12.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 12.3 Environment Uncertainty and Mapping . . . . . . . . . . . . . . . . 655 12.4 Visibility-Based Pursuit-Evasion . . . . . . . . . . . . . . . . . . . . 684 12.5 Manipulation Planning with Sensing Uncertainty . . . . . . . . . . 691 IV Planning Under Differential Constraints 711 13 Differential Models 715 13.1 Velocity Constraints on the Configuration Space . . . . . . . . . . . 716 13.2 Phase Space Representation of Dynamical Systems . . . . . . . . . 735 13.3 Basic Newton-Euler Mechanics . . . . . . . . . . . . . . . . . . . . . 745 13.4 Advanced Mechanics Concepts . . . . . . . . . . . . . . . . . . . . . 762 13.5 Multiple Decision Makers . . . . . . . . . . . . . . . . . . . . . . . . 780 14 Sampling-Based Planning Under Differential Constraints 787 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788 14.2 Reachability and Completeness . . . . . . . . . . . . . . . . . . . . 798 14.3 Sampling-Based Motion Planning Revisited . . . . . . . . . . . . . 810 14.4 Incremental Sampling and Searching Methods . . . . . . . . . . . . 820 14.5 Feedback Planning Under Differential Constraints . . . . . . . . . . 837 14.6 Decoupled Planning Approaches . . . . . . . . . . . . . . . . . . . . 841 14.7 Gradient-Based Trajectory Optimization . . . . . . . . . . . . . . . 855 15 System Theory and Analytical Techniques 861 15.1 Basic System Properties . . . . . . . . . . . . . . . . . . . . . . . . 862 15.2 Continuous-Time Dynamic Programming . . . . . . . . . . . . . . . 870 15.3 Optimal Paths for Some Wheeled Vehicles . . . . . . . . . . . . . . 880
viii CONTENTS 15.4 Nonholonomic System Theory . . . . . . . . . . . . . . . . . . . . . 888 15.5 Steering Methods for Nonholonomic Systems . . . . . . . . . . . . . 910
分享到:
收藏