logo资料库

Handbook of Markov Chain Monte Carlo .pdf

第1页 / 共621页
第2页 / 共621页
第3页 / 共621页
第4页 / 共621页
第5页 / 共621页
第6页 / 共621页
第7页 / 共621页
第8页 / 共621页
资料共621页,剩余部分请下载后查看
Handbook of Markov Chain Monte Carlo
Chapman & Hall/CRC Handbooks of Modern Statistical Methods Series Editor Garrett Fitzmaurice Department o f Biostatistics Harvard School o f Public Health Boston, MA, U.S.A. Aims and Scope The objective o f the series is to provide high-quality volumes covering the state-of-the-art in the theory and applications o f statistical methodology. The hooks in the series are thoroughly edited and present comprehensive, coherent, and unified summaries o f specific methodological topics from statistics. The chapters are written by the leading researchers in the field, and present a good balance o f theory and application through a synthesis o f the key methodological developments and examples and case studies using real data. The scope o f the series is wide, covering topics o f statistical methodology that are well developed and find application in a range o f scientific disciplines. The volumes are primarily o f interest to researchers and graduate students from statistics and biostatistics, but also appeal to scientists from fields where the methodology is applied to real problems, including medical research, epidemiology and public health, engineering, biological science, environmental science, and the social sciences. Published Titles Longitudinal Data Analysis Edited by Garrett Fitzmaurice, Marie Davidian, Geert Verheke, and Geert Molenherghs Handbook of Spatial Statistics Edited by Alan E, Gelfand, Peter J. Diggle, Montserrat Fuentes, and Peter Guttorp Handbook of M arkov Chain Monte Carlo Edited by Steve Brooks, Andrew Gelman, Galin L. Jones, andXiao-Li Meng
Chapman & Hall/CRC Handbooks of Modern Statistical Methods Handbook of Markov Chain Monte Carlo E dited by Steve Brooks Andrew Gelman Galin L. Jones Xiao-Li Meng CRC Press Taylor S. Francis Group Boca Ralon London New York C R C Press is an im p rin l of the Taylor & Francis Croup, an informa business A C H A P M A N & H AL L BO O K
M A TLA B” is a tradem ark o f T he M athW orks, Inc. and is used with perm ission, T he M athW orks does not w arrant the accuracy o f the text or exercises in this book. T his book's use or discussion o f M A T L A B 7, softw are or related products does not constitute endorsem ent or sponsorship by T he M athW orks o f a particular pedagogical approach or particular use o f the M A TLA IT softw are. Chapm an & Hall/CRC Taylor & Francis Group 6 0 0 0 Broken Sound Parkway NW, Suite 3 0 0 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC Chapm an & Hall/CRC Ls an im print o f Taylor & Francis Group, an Info m i a business No claim to original U.S. Governm ent works International Standard Book Number-13: 978-1-4200-7942-5 (eBook - PDF) T his book contains inform ation obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and inform ation, but the author and publisher cannot assume responsibility for the valid­ ity o f all m aterials or the consequences o f their use. T he authors and publishers have attem pted to trace the copyright holders o f all m aterial reproduced in this publication and apologize to copyright holders if perm ission to publish in this form has not been obtained. If any copyright m aterial has not been acknowledged please w rite and let us know so we may rectify in any future reprint. Except as perm itted under U.S. Copyright Law, no part o f th is book may be reprinted, reproduced, transm itted, or uti­ lized in any form by any electronic, m echanical, or other m eans, now known or hereafter invented, including photocopy­ ing, m icrofilm ing, and recording, or in any inform ation storage or retrieval system, without w ritten perm ission from the publishers. For perm ission to photocopy or use m aterial electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright C learance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, M A 01923, 97 8 -750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety o f users. For organizations that have been granted a photocopy license by the CCC , a separate system o f payment has been arranged. T rad em ark N otice: Product or corporate names may be tradem arks or registered tradem arks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http: //w w w,taylor a nd f ranci s .com and the CRC Press Web site at http://www,crcpress,com
Contents Preface................................................................................................................................................... xix Editors...................................................................................................................................................xxi Contributors...................................................................................................................................... xxiii Part I Foundations, Methodology, and Algorithms 1. Introduction to Markov Chain Monte Carlo..........................................................................3 1.10 Variance Estimation Charles J. Geyer 1.1 History....................................................................................................................................3 1.2 Markov Chains.....................................................................................................................4 1.3 Computer Programs and Markov Chains .....................................................................5 1.4 Stationaiity............................................................................................................................ 5 1.5 Reversibility..........................................................................................................................6 1.6 Functionals............................................................................................................................ 6 1.7 The Theory of Ordinary Monte Carlo ...........................................................................6 1.8 The Theory of M CM C........................................................................................................ 8 1.8.1 Multivariate Theory...............................................................................................8 1.8.2 The Autocovariance Function............................................................................. 9 1.9 AR{1) Exam ple.....................................................................................................................9 1.9.1 A Digression, on Toy Problem s...................................................................... 10 1.9.2 Supporting Technical R ep o rt.........................................................................11 1.9.3 The Exam ple...................................................................................................... 11 ........................................................................................................13 1.10.1 Nonoverlapping Batch M ean s...................................................................... 13 Initial Sequence Methods................................................................................ 16 1.10.2 1.10.3 Initial Sequence Methods and Batch M e a n s..............................................17 1 11 The Practice of M C M C ................................................................................................. 17 1.11.1 Black Box MCMC ............................................................................................ 18 1.11.2 Pseudo-Convergence........................................................................................18 1.11.3 One Long Run versus Many Short Runs..................................................... 18 1.11.4 Bu rn-In................................................................................................................ 19 1.11.5 Diagnostics.........................................................................................................21 1.12 Elementary Theory of M CM C..................................................................................... 22 1.12.1 The Metropolis-Hastings Update................................................................. 22 1.12.2 The Metropolis-Hastings Theorem...............................................................23 1.12.3 The Metropolis U p d ate...................................................................................24 1.12.4 The Gibbs U p d ate............................................................................................ 24 1.12.5 Vaiiable-at-a-Time Metropolis-Hastings..................................................... 25 1.12.6 Gibbs Is a Special Case of Metropolis-Hastings .......................................26 1.12.7 Combining Updates.......................................................................................... 26 1.12.7.1 Composition...................................................................................... 26 1.12.7.2 Palindromic Com position..............................................................26 1.12.8 State-Independent M ixing..............................................................................26 1.12.9 Subsampling.......................................................................................................27 1.12.10 Gibbs and Metropolis Revisited.................................................................... 28 v
vi Contents 1.13 A Metropolis Example..................................................................................................... 29 1.14 Checkpointing..................................................................................................................34 1.15 Designing M C M C C ode................................................................................................ 35 1.16 Validating and Debugging MCMC C od e...................................................................36 1.17 The Metropolis-Hasting^ Green Algorithm..............................................................37 1.17.1 State-Dependent Mixing ................................................................................38 1.17.2 Radon-Nikodym Derivatives.........................................................................39 .................................................. 40 1.17.3 Measure-Theoretic Metropolis-Hastings 1.17.3.1 Metropolis-Hastings-Green Elementary U p d ate....................40 1.17.3.2 The MHG Theorem ..........................................................................42 1.17.4 MHG with Jacobians and Augmented State S p a c e .................................45 1.17.4.1 The MHGJ Theorem ........................................................................46 Acknowledgments.................................................................................................................... 47 References...................................................................................................................................47 2. A Short History of MCMC: Subjective Recollections from Incomplete D ata........49 2.2.1 2.2.2 Christian. Rd>ert and George CaseUn 2.1 Introduction.......................................................................................................................49 2.2 Before the Revolution..................................................................................................... 50 The Metropolis et al. (1953) Paper.................................................................50 The Hastings (1970) P ap er............................................................................. 52 2.3 Seeds of the Revolution...................................................................................................53 Besag and the Fundamental (Missing) Theorem ......................................53 2.3.1 2.3.2 EM and Its Simulated Versions as Precursors...........................................53 2.3.3 Gibbs and Beyond.............................................................................................54 2.4 The Revolution..................................................................................................................54 2.4.1 Advances in MCMC Theory...........................................................................56 2.4.2 Advances in MCMC A pplications.............................................................. 57 2.5 After the Revolution........................................................................................................58 2.5.1 A Brief Glimpse atPartide System s............................................................58 2.5.2 Perfect Sam pling...............................................................................................58 2.5.3 Reversible Jump and Variable Dimensions................................................59 2.5.4 Regeneration and the Central Limit Theorem ...........................................59 2.6 Conclusion.........................................................................................................................60 Acknowledgments.................................................................................................................... 61 References...................................................................................................................................61 3. Reversible Jump MCMC..........................................................................................................67 Yimtvi F(m mid Scott A. Sisson 3.1 3.2 Introduction.......................................................................................................................67 3.1.1 From Metropolis-Hastmgs to Reversible Jum p........................................ 67 3.1.2 Application A re a s............................................................................................ 68 Im plementation............................................................................................................... 71 3.2.1 Mapping Functions and Proposal Distributions......................................72 3.2.2 Marginalization and Augmentation............................................................ 73 3.2.3 Centering and Order M ethods......................................................................74 3.2.4 Multi-Step Proposals....................................................................................... 77 3.2.5 Generic Samplers...............................................................................................78
分享到:
收藏