logo资料库

马尔科夫链蒙特卡洛方法.pdf

第1页 / 共53页
第2页 / 共53页
第3页 / 共53页
第4页 / 共53页
第5页 / 共53页
第6页 / 共53页
第7页 / 共53页
第8页 / 共53页
资料共53页,剩余部分请下载后查看
Markov Chain Monte Carlo Methods
Introduction
Integration problems in Bayesian inference
Markov Chain Monte Carlo Integration
Markov Chain
The Metropolis-Hastings Algorithm
Metropolis-Hastings Sampler
The Metropolis Sampler
Random Walk Metropolis
The Independence Sampler
Single-component Metropolis Hastings Algorithms
Application: Logistic regression
Lecture 8: Markov Chain Monte Carlo Methods () (ŒŒŒ¯¯¯AAAkkk{{{) Monday 26th October, 2009
Contents 1 Markov Chain Monte Carlo Methods 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Integration problems in Bayesian inference . . . . . . 1.1.2 Markov Chain Monte Carlo Integration . . . . . . . 1.1.3 Markov Chain . . . . . . . . . . . . . . . . . . . . . 1 1 2 4 8 1.2 The Metropolis-Hastings Algorithm . . . . . . . . . . . . . . 13 1.2.1 Metropolis-Hastings Sampler . . . . . . . . . . . . . 14 1.2.2 The Metropolis Sampler . . . . . . . . . . . . . . . . 22 1.2.3 Random Walk Metropolis . . . . . . . . . . . . . . . 23 . . . . . . . . . . . . . . 33 1.2.4 The Independence Sampler 1.3 Single-component Metropolis Hastings Algorithms . . . . . 37 1.4 Application: Logistic regression . . . . . . . . . . . . . . . . 39 Previous Next First Last Back Forward 1
Chapter 1 Markov Chain Monte Carlo Methods 1.1 Introduction MCMC(Markov Chain Monte Carlo) {ne–ºw Metropo- lis et al. (1953)–9 Hastings (1970), –9ƒ«0MCMC;˝. !•0ø«{˜gA^. 5¿3c¡0Monte Carlo{O¨' g(t)dt, A ·rd¨'L«⁄Ø,V˙f (t)eˇ". l¨'OflK=z ⁄l8IV˙f (t)¥) ¯. Previous Next First Last Back Forward 1
3MCMC{¥, ˜kÆŒ¯, ƒf (t)†›'. K –$1dŒ¯¿'m ´æ†›', @ol8I'f (t)¥ )¯, ·l†›GŒ¯¥)·». • 0A«ÆøŒ¯{: Metropolis{, Metropolis- Hastings{, –9Gibbs˜{. —ATkfl•(rapid mixing)5—l?¿uØfl†›'. 1.1.1 Integration problems in Bayesian inference Bayesian¥NıflK·MCMC{A^. lBayesian*:5w, .¥*CºŒ·¯C. ˇd, x = (x1, · · · , xn)º ŒθØ'–L« fx,θ(x, θ) = fx|θ(x1, · · · , xn)π(θ). Previous Next First Last Back Forward 2
lBayes‰n, –ˇLx = (x1, · · · , xn)&EØθ'?1 #: fθ|x(θ|x) == K3'e, g(θ)ˇ" Eg(θ|x) = g(θ)fθ|x(θ|x)dθ = fx|θ(x)π(θ)dθ fx|θ(x)π(θ) . g(θ)fx|θ(x)π(θ)dθ fx|θ(x)π(θ)dθ . d¨'x…Œ. ˇd–Øg(θ)?1. ’Xg(θ) = θ, KEg(θ|x) = E[θ|x] –θO. ØdaflK•˜/“: Eg(Y ) = g(t)π(t)dt π(t)dt . øpπ(·)‰q,. eπ, Kdˇ"=~ˇ"‰´: Eg(Y ) = g(t)fY (t)dt. eπq,, KIKz~Œ–⁄ . 3d'¥, π(·). π(·) Kz~Œ, d¨' Previous Next First Last Back Forward 3
–O. ('f'1¥Kz~Œ-). ø·~—5, ˇ 3 ØıflKe, Kz~ŒØJO. ,¡, 3ØıNflK¥d¨'vkw«L«, Œ{ØJO , AO·3p, MCMC{Øda¨'Jł Ø—O{. 1.1.2 Markov Chain Monte Carlo Integration ¨' E[g(θ|x)] = g(θ)fθ|x(θ|x)dθ Monte CarloO m i=1 ¯g = 1 m g(xi), ¥x1, · · · , xml'fθ|x(θ|x)¥˜. x1, · · · , xmÆ, K –Œ˘n“uˆ¡, ¯g´æE[g(θ|x). ·3flK¥, l'fθ|x(θ|x)¥˜·~(J, MCMC {·d8), 1”MC”, Markov Chain, L«l8I' ¥˜, 1”MC”, Monte Carlo, KL«3˜e, A^Monte Previous Next First Last Back Forward 4
Carlo¨'{ب'?1O. MCM{n3ueª4‰n: Theorem 1. {Xt, t ≥ 0},–ˇGmΩŒ…, π†›', π0·—'', K πt → π, t → ∞. øpπtL«Œ…3t>S'. d‰n‘†dŒ…$1¿' m(t = n, nØ), K3n, Xn'π, —''ˆ’. Theorem 2. (Markov chain Law of Large Numbers)eX1, X2, · · · H {†›'πŒ…(¥zXt–·ı), KXn'´æ 'π¯CX, Ø?¿…Œf , Eπ|f (X)|3, n → ∞, K n t=1 ¯fn = 1 n f (Xt) → Eπf (X), a.s. Previous Next First Last Back Forward 5
e¡•OH{ ¯fn. Pf t = f (Xt), γk = cov(f t, f t+k), Kf tσ2 = γ0, k’XŒρk = γk/σ2. l n V arπ( t=1 f t) f t) = 1 n n n−t t=1 1 n k=1 1 n n = nV arπ( ¯fn) = nV ar( τ 2 n t=1 = 1 n V arπ(f t) + 2 cov(f t, f t+k) n−1 n − k n n−1 n − k n ρk]. = σ2 + 2 γk = σ2[1 + 2 k=1 –y† . ˇdH{ ¯fn n → τ 2 = σ2[1 + 2 τ 2 n−1 [1 + 2 σ2 n k=1 V arπ( ¯fn) = k=1 ρk] ∞ k=1 n − k n ρk]. Previous Next First Last Back Forward 6
分享到:
收藏