Lecture 8: Markov Chain Monte Carlo Methods
()
(ŒŒŒ¯¯¯AAAkkk{{{)
Monday 26th October, 2009
Contents
1 Markov Chain Monte Carlo Methods
1.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1.1
Integration problems in Bayesian inference . . . . . .
1.1.2 Markov Chain Monte Carlo Integration . . . . . . .
1.1.3 Markov Chain . . . . . . . . . . . . . . . . . . . . .
1
1
2
4
8
1.2 The Metropolis-Hastings Algorithm . . . . . . . . . . . . . . 13
1.2.1 Metropolis-Hastings Sampler
. . . . . . . . . . . . . 14
1.2.2 The Metropolis Sampler . . . . . . . . . . . . . . . . 22
1.2.3 Random Walk Metropolis . . . . . . . . . . . . . . . 23
. . . . . . . . . . . . . . 33
1.2.4 The Independence Sampler
1.3 Single-component Metropolis Hastings Algorithms
. . . . . 37
1.4 Application: Logistic regression . . . . . . . . . . . . . . . . 39
Previous Next First Last Back Forward
1
Chapter 1
Markov Chain Monte Carlo Methods
1.1 Introduction
MCMC(Markov Chain Monte Carlo) {ne–ºw Metropo-
lis et al. (1953)–9 Hastings (1970), –9ƒ«0MCMC;˝.
!•0ø«{˜gA^.
5¿3c¡0Monte Carlo{O¨'
g(t)dt,
A
·rd¨'L«⁄Ø,V˙f (t)eˇ". l¨'OflK=z
⁄l8IV˙f (t)¥) ¯.
Previous Next First Last Back Forward
1
3MCMC{¥, ˜kÆŒ¯, ƒf (t)†›'. K
–$1dŒ¯¿'m ´æ†›', @ol8I'f (t)¥
)¯, ·l†›GŒ¯¥)·». •
0A«ÆøŒ¯{: Metropolis{, Metropolis-
Hastings{, –9Gibbs˜{. —ATkfl•(rapid
mixing)5—l?¿uØfl†›'.
1.1.1
Integration problems in Bayesian inference
Bayesian¥NıflK·MCMC{A^. lBayesian*:5w,
.¥*CºŒ·¯C. ˇd, x = (x1, · · · , xn)º
ŒθØ'–L«
fx,θ(x, θ) = fx|θ(x1, · · · , xn)π(θ).
Previous Next First Last Back Forward
2
lBayes‰n, –ˇLx = (x1, · · · , xn)&EØθ'?1
#:
fθ|x(θ|x) ==
K3'e, g(θ)ˇ"
Eg(θ|x) =
g(θ)fθ|x(θ|x)dθ =
fx|θ(x)π(θ)dθ
fx|θ(x)π(θ)
.
g(θ)fx|θ(x)π(θ)dθ
fx|θ(x)π(θ)dθ
.
d¨'x…Œ. ˇd–Øg(θ)?1. ’Xg(θ) = θ,
KEg(θ|x) = E[θ|x] –θO.
ØdaflK•˜/“:
Eg(Y ) =
g(t)π(t)dt
π(t)dt
.
øpπ(·)‰q,. eπ, Kdˇ"=~ˇ"‰´:
Eg(Y ) = g(t)fY (t)dt. eπq,, KIKz~Œ–⁄
. 3d'¥, π(·). π(·) Kz~Œ, d¨'
Previous Next First Last Back Forward
3
–O. ('f'1¥Kz~Œ-). ø·~—5, ˇ
3 ØıflKe, Kz~ŒØJO.
,¡, 3ØıNflK¥d¨'vkw«L«, Œ{ØJO
, AO·3p, MCMC{Øda¨'Jł Ø—O{.
1.1.2 Markov Chain Monte Carlo Integration
¨' E[g(θ|x)] = g(θ)fθ|x(θ|x)dθ Monte CarloO
m
i=1
¯g =
1
m
g(xi),
¥x1, · · · , xml'fθ|x(θ|x)¥˜. x1, · · · , xmÆ, K
–Œ˘n“uˆ¡, ¯g´æE[g(θ|x).
·3flK¥, l'fθ|x(θ|x)¥˜·~(J, MCMC
{·d8), 1”MC”, Markov Chain, L«l8I'
¥˜, 1”MC”, Monte Carlo, KL«3˜e, A^Monte
Previous Next First Last Back Forward
4
Carlo¨'{ب'?1O.
MCM{n3ueª4‰n:
Theorem 1. {Xt, t ≥ 0},–ˇGmΩŒ…,
π†›', π0·—'', K
πt → π,
t → ∞.
øpπtL«Œ…3t>S'. d‰n‘†dŒ…$1¿'
m(t = n, nØ), K3n, Xn'π, —''ˆ’.
Theorem 2. (Markov chain Law of Large Numbers)eX1, X2, · · · H
{†›'πŒ…(¥zXt–·ı), KXn'´æ
'π¯CX, Ø?¿…Œf , Eπ|f (X)|3, n → ∞,
K
n
t=1
¯fn =
1
n
f (Xt) → Eπf (X),
a.s.
Previous Next First Last Back Forward
5
e¡•OH{ ¯fn. Pf t = f (Xt), γk = cov(f t, f t+k),
Kf tσ2 = γ0, k’XŒρk = γk/σ2. l
n
V arπ(
t=1
f t)
f t) =
1
n
n
n−t
t=1
1
n
k=1
1
n
n = nV arπ( ¯fn) = nV ar(
τ 2
n
t=1
=
1
n
V arπ(f t) + 2
cov(f t, f t+k)
n−1
n − k
n
n−1
n − k
n
ρk].
= σ2 + 2
γk = σ2[1 + 2
k=1
–y†
. ˇdH{ ¯fn
n → τ 2 = σ2[1 + 2
τ 2
n−1
[1 + 2
σ2
n
k=1
V arπ( ¯fn) =
k=1
ρk]
∞
k=1
n − k
n
ρk].
Previous Next First Last Back Forward
6