L. S. PONTRYAGIN
SELECTED WORKS
Volume 4
The Mathematical Theory of Optimal Processes
Classics o f Soviet Mathematics
L. S. PONTRYAGIN SELECTED WORKS
Edited by R . V. Gamkrelidze
Volume 1: Selected Research Papers
Volume 2: Topological Groups
Volume 3: Algebraic and Differential Topology
Volume 4: The Mathematical Theory o f Optimal Processes
ISSN 0743-9199
This book is part of a series. The publishers will accept continuation orders which may
be cancelled at any time and which provide for automatic billing and shipping of each title
in the series upon publication. Please write for details.
L. S. PONTRYAGIN
SELECTED WORKS
Volume 4
The Mathematical Theory o f
Optimal Processes
L. S. Pontryagin, V. G. Boltyanskii,
R . V. G am krelidze, and E. F. Mishchenko
Translated from the Russian
by K. N. TrirogofF
Aerospace Corporation,
El SegunJo, California
English Edition Edited by
L. W. Neustadt
Aerospace Corporation
El SegunJo, California
CRC Press
\Cf^ J Taylor Si Francis Group
Boca Raton London New York
CRC Press is an imprint of the
Taylor & Francis Group, an inform a business
0 1986 by Gordon and Bmch S c i m Publishtrs BA.. P.O. Box 161.1820 Montrew 2,
Swittetland. All rights mmd.
Gordon and Breach SEieaa Publishers
P.O. Box 784
Cooper Station
New York, NY 10276
United Starts d Americp
P.O. Box 197
London WC2E 9PX
Englafid
58, rue Lhomond
75005 M
Ftrac~
1C9 Okubo 3 4 o m t
Shiajuku-ku, Tokyo la
J a m
s
Originally plblishcd m Russh as Mamrmwcnmn r.rrpnn omwvlnrnhlx n ~ e o m
U k l ' g v n Nulltr. M-.
Firsl pblirlmd in EngliP by Inkmcitaee R 1 M i . divirion of John Wiky & W. Inc.
@ t%2 by John Wiey & Soar. Inc. Thad M h g . -bet
Repainlad. by F .
by Gwdon md Bmch Scicaoc Publihhen S.A.. 1986.
flepnntcd from I copy m the c a l m of Ihe Bmddya PuMic I d m y .
I%l,
1%5.
by
tikvf Of c w c8--
P m t r y e ~ . L. 8. (Lcv Semenovich), 1-
IhU
of Soviet mathmaties ISSN 0743-9199)
The mathematical themy of optimal 7.
(L. S. P o n m n sekcted works ; v. 4) (W i
Tranlrion ok yalermtiebcska& hnik
Reppint Originally published: Ncw York :
Intedenct PuMirhcrs. 1962. Wilh new introd.
optimal 'nykh p r m v .
Bibliography: p.
lncludea index.
I. Mathematical optimimtiw. 1. MeurtPdt,
L i e n W. 11. Titk. 111. Title OplimPl p-.
IV. Setics: Pontq.pin, L S. (Lev Stmeawich),
1 4 0 8 . !kkthu. Poly@.
IHS;v.4.
V. Srk Clasrics of Swia mathematics.
QA3.P76 1985 vol. 4
ISBN 2-88124477-1 (Switzrrbnd)
IQA402.51
510 1 [519]
864732
Volume 4: ISBN 24812M7-1; Qvolume m: ISBN 248laC1344. No pad ofthis
or utilimd in any form or by any means, tkaronie or mcchani-
bDok m y be @wed
crr by l a y idormalion stow or reprkval
4. k l w l i ~ pboloCoPYjng a d d
systm, without p m h a h n in mitig fmm Iht publirhm. R i n d m G m t Britain by
Bell and Bain Ltd.. (3-.
g
,
Disclaimer
The publisher has made every effort to trace copyright holders and welcomes
correspondence b m those they have been unable to contact.
Lev Semenovich Pontryagin
N
í
ilU
I
Contents
Editor’s Preface................................................................................
xi
Preface to the English Translation................................................ xxiii
Introduction......................................................................................
1
Chapter I. The Maximum Principle..............................................
1. Admissible Controls..............................................................
2. Statement of the Fundamental Problem............................
3. The Maximum Principle......................................................
4. Discussion of the Maximum Principle..............................
5. Examples. The Synthesis Problem......................................
6. The Problem with Variable Endpoints and the Trans-
versality Conditions......................................................
7. The Maximum Principle for Non-Autonomous Systems.
8. Fixed Time Problems............................................................
9. The Relation of the Maximum Principle to the Method of
Dynamic Programming................................................
9
9
11
17
21
22
45
58
66
69
Chapter II. The Proof of the Maximum Principle......................
75
75
10. Admissible Controls..............................................................
11. The Formulation of the Maximum Principle for an Arbi
trary Class of Admissible Controls............................
12. The System of Variational Equations and its Adjoint
83
System............................................................................
86
13. Variations of Controls and Trajectories............................
92
14. Fundamental Lemmas..........................................................
15. The Proof of the Maximum Principle................................
99
16. The Derivation of the Transversality Conditions............ 108
79
Chapter III. Linear Time-Optimal Processes.............................. 115
17. Theorems on the Number of Switchings............................ 115
18. Uniqueness Theorems.......................................................... 123
vu