logo资料库

vrp网络模型的数学建模描述.pdf

第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
资料共6页,全文预览结束
Network Modeling Analysis Professor Anthony F. Han .VEHICLE ROUTING PROBLEM 1. VRP 示意圖 路線二 路線一 1 需求點1 Depot 路線三 路線四 (1) 通常構建網路模式(Network Model)為分析工具: G N A AN } ,{ = = 節點 = 節線 (node) (arc) 之集合 之集合 (2) 網路模式問題型態 最短路線問題(Shortest Path Problem, SPP) 旅行銷售員問題(Traveling Salesman Problem, TSP) 車輛路線問題(Vehicle Routing Problem, VRP) (3) 傳統 VRP 通常只考慮: 單場站(single depot) 單車種(single vehicle-type) 只單純考慮取貨(pick-up)或送貨(delivery)問題 無時間窗(time window) (4) VRP 複雜度極高,屬 NP-Hard 型態,點數多時(n>30)通常不易求得最佳解 (5) 實際應用時,通常用啟發式解法(Heuristics Method)求近似解 1 C:\Documents and Settings\CWZu\桌面\2005_網路模式\課程資料更新\VRP\VEHICLE ROUTING PROBLEM(2006_rev).doc
Network Modeling Analysis Professor Anthony F. Han 2. VRP Formulation 2.1 Golden’s Formulation (Golden 1977) [CAOR pp.96.97] Minimize Subject to N N NV ∑∑∑ j 1 = v = 1 i = 1 C ij x v ij + ⎛ ⎜ ⎝ ∑∑ f v v j x v 1 j ⎞ ⎟ ⎠ x v ij = 1 x v ij = 1 j ( = 2 ,..., N ) i ( = 2 ,..., N ) ∑∑ ∑∑ v v i j i i n ∑ 2 j = n ∑ i = 2 i j - =1 x v ip ∑∑ =1 Loading Capacity ∑∑ d x ( i x v pj = 0 v ij ) ≤ K v j path time constraint + ∑ ∑ x v i v ij t j p ( = ,..., 1 N v ; = ,..., 1 NV ) v ( = ,..., 1 NV ) t x v ij v ij ≤ T v ( v = 1 ,..., NV ) ∑∑ i j x v 1 j ≤ 1 x v i 1 ≤ 1 ( v = 1 ,..., NV ) ( v = ,..., 1 NV ) Subtour breaking } { 1 or 0 = X = x x ij v ij ∈ S ⎛ ⎜ ⎝ x ij = x v ij ∑ v ⎞ ⎟ ⎠ for all v, i and j 2.2 VRP Time-Window Constraints a ≤ a j i.e. (arrival time at j) ≤ a j j [ ∈ a aj , ] (time window) j v = 1 if xij a if x v ij = x ij = a i + t v i + v ij t j =∑ 0 a j = 0 Zero time 表示未曾到達 v nonlinear! a a + = x t i j v i v ij ( ) + ( 1 + − ( 1 − − where T is a large number and a ∑∑ v i ( t a + ( t a t ) ) a a t t + + ≤ ≥ + v ij v ij v i v i j i j i v ij ) x T v ij ) x T v ij a ≤ ≤ j j linear a j 2 C:\Documents and Settings\CWZu\桌面\2005_網路模式\課程資料更新\VRP\VEHICLE ROUTING PROBLEM(2006_rev).doc
Network Modeling Analysis Professor Anthony F. Han 3. VRP Heuristic Methods 求解策略(Solution Strategy):兩階段 (1) 起始解產生 a. 節省法(Saving)或插入法(Insertion) b. Cluster First Route Second, e.g. Sweep Method c. Route First Cluster Second d. MP Approach, e.g. Generalized Assignment (2) 改進階段 a. 路線內(TSP)交換改善﹐如 2-opt, 3-opt b. 路線間交換改善 在 PC 上節省法﹐掃描法﹐2-opt 均易執行 平行(Parallel)節省法:較節省路程 循序(Sequential)節省法:較節省車輛 4. Clark-and-Wright Savings Algorithm (1964) Symmetric distance (can be relaxed) id j saving ) ,( = (即單車連結 j i , 兩點比兩車分別 服務此兩點所節省的距離) j iS ) ,( id )1 ,( j ) ,1( − + d i j Depot Procedure: (1) Calculate ( , ) (2) Make a “saving list” (由大至小) S i j (3) Include ( , ) i S i ( , ) in one route, if j for every node pair ( , ) j i Start from the largest j in the list a. both i and j not covered (new route) b. only one of i and j is covered and is external (add to old route) c. both are covered and external (combine two routes) (4) Continue to the next S i ( , ) j on the list until the list is exhausted, or all nodes are covered. If there are points left uncovered, they are covered each by a single route. 3 C:\Documents and Settings\CWZu\桌面\2005_網路模式\課程資料更新\VRP\VEHICLE ROUTING PROBLEM(2006_rev).doc
Network Modeling Analysis Professor Anthony F. Han 節省法(Savings Algorithm)步驟 已知:各需求點之間距離 j id ) ,( 各車裝載容量 j S i (步驟 1) 計算各點間之節省值 ( , ) (步驟 2) 依節省值大小次序列表,從表中最大之節省值開始執行 (步驟 3a) <平行法> a) 在不違背裝載及其他限制下,考慮該兩點之連結與路線合倂 b) 重覆 a),直到節省表或點數用完為止 (步驟 3b) <循序法> a) 在表中尋第一條可連結延伸現有路線的節省值(不違背營運條件) b) 若表中找不到可行之節省值,由表中最大值重新定義一條路線 c) 重覆 a)、b)直到節省表或點數用完 (步驟 4) 依步驟(步驟 3)結果,定義出結果路線 4 C:\Documents and Settings\CWZu\桌面\2005_網路模式\課程資料更新\VRP\VEHICLE ROUTING PROBLEM(2006_rev).doc
Network Modeling Analysis Professor Anthony F. Han [Example:] [L&O] pp. 416-423 點 數 2 3 4 5 6 7 8 9 10 需求量 4 6 5 4 7 3 4 5 4 裝載容量:每車 23 單位 路線 1 1 1 1 x x 2 1 x 2 x x x x x 2 裝載 11 11+4=15 15+5=20 20+4=24 - - 9 20+3=23 - 9+6=15 - - - - - 路線連接 1-6-10-1 1-6-10-9-1 1-6-10-9-8-1 x - - 1-4-5-1 1-7-6-10-9-8-1 - 1-3-4-5-1 - - - - - 15+4=19 1-2-3-4-5-1 Saving 86 83 78 77 66 57 55 50 49 48 48 47 47 46 39 39 i j ( , ) (6,10) (9,10) (8,9) (5,6) (8,10) (7,10) (4,5) (6,7) (5,10) (3,4) (2,4) (6,9) (4,6) (7,9) (7,8) (2,3) (停止:所有點已經涵蓋) 5 C:\Documents and Settings\CWZu\桌面\2005_網路模式\課程資料更新\VRP\VEHICLE ROUTING PROBLEM(2006_rev).doc
Network Modeling Analysis Professor Anthony F. Han 5. Generalized Assignment Heuristic for VRP [Fisher & Jaikumar (1981)] Cluster First: Assign vehicles to a specific set of nodes. Route Second: Find TSP for each veh-route. Procedure: (設共有 k 部 veh; ki , k = 1,2,.... K ) (1) Select K “seed” point, each is covered by one veh. (2) Calculate jkd = the cost of inserting j into the route in which veh k travels from the depot directly to ki and back [ Min c c 0 0 c i o k c oi c i ] + + + + − c c j k ji k ( j 0 , j k + c i 0 k ) i k = j ik (3) Solve the generalized assignment problem depot Min s t . . d y jk jk N K j 1 = ∑∑ k 1 = ∑ a y j ≤ b k jk k = 1 ,..., K j K ∑ k = y 0 jk = 1 , ⎧ ⎨ K , ⎩ or 1 y jk = 0 j j = = N 1 2 , ,..., 0 (4) solve K 個 TSP RULES to determine the seed pints: high demand, e.g., (demand/capacity)>1/2. (1) Select those nodes which are either most remote from the depot, or with very (2) Make the K seed nodes properly scattered to cover the service area. 6 C:\Documents and Settings\CWZu\桌面\2005_網路模式\課程資料更新\VRP\VEHICLE ROUTING PROBLEM(2006_rev).doc
分享到:
收藏