logo资料库

L6599的应用资料.pdf

第1页 / 共37页
第2页 / 共37页
第3页 / 共37页
第4页 / 共37页
第5页 / 共37页
第6页 / 共37页
第7页 / 共37页
第8页 / 共37页
资料共37页,剩余部分请下载后查看
1 Main characteristics and circuit description
2 Electrical test results
2.1 Efficiency measurements
2.2 Resonant stage operating waveforms
2.3 Stand-by and no load power consumption
2.4 Short-circuit protection
2.5 Overvoltage protection
3 Thermal tests
4 Conducted emission pre-compliance test
5 Bill of materials
6 PFC coil specification
6.1 Electrical characteristics
6.2 Mechanical aspect and pin numbering
7 Resonant power transformer specification
7.1 Electrical characteristics and mechanical aspect
8 Auxiliary flyback power transformer
8.1 Electrical characteristics
9 Reference design board layout
10 Revision history
AN2393 Application note Reference design: wide range 200W L6599-based HB LLC resonant converter for LCD TV & flat panels Introduction This note describes the performances of a 200W reference board, with wide-range mains operation and power-factor-correction (PFC). Its electrical specification is tailored to a typical high-end application for LCD TV or monitor applications. The main features of this design are the very low no-load input consumption (<0.5W) and the very high global efficiency, better than 87% at full load and nominal mains voltage (115 - 230 VAC). The circuit consists of three main blocks; the first is a front-end PFC pre-regulator based on the L6563 PFC controller. The second stage is a multi-resonant half-bridge converter whose control is implemented through the STMicroelectronics L6599 resonant controller. A further auxiliary flyback converter based on the Viper12A off-line primary switcher completes the architecture. This third block is mainly intended for microprocessor supply and display power management operations. L6599 and L6563 200W Evaluation board (EVAL6599-200W) September 2006 Rev 2 1/37 www.st.com
Contents Contents AN2393 1 2 3 4 5 6 7 8 9 Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . . . 5 Electrical test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Efficiency measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Resonant stage operating waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 2.3 Stand-by and no load power consumption . . . . . . . . . . . . . . . . . . . . . . . . 15 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 2.5 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Thermal tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Conducted emission pre-compliance test . . . . . . . . . . . . . . . . . . . . . . 21 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PFC coil specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.1 6.2 Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Resonant power transformer specification . . . . . . . . . . . . . . . . . . . . . 30 Electrical characteristics and mechanical aspect . . . . . . . . . . . . . . . . . . . 30 7.1 Auxiliary flyback power transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.1 Reference design board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2/37
AN2393 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Efficiency measurements @VIN = 115 VAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Efficiency measurements @VIN = 230 VAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Stand-by consumption at VIN = 115 VAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Stand-by consumption at VIN = 230 VAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Key components temperature at 115 VAC - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Key components temperature at 230 VAC - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PFC coil winding characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Resonant transformer dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Resonant transformer winding characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Auxiliary transformer winding characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3/37
List of figures List of figures AN2393 Auxiliary converter electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 1. PFC pre-regulator electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 2. Resonant converter electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 3. Overall efficiency versus output power at nominal mains voltages. . . . . . . . . . . . . . . . . . . 11 Figure 4. Overall efficiency versus output power at several input voltage values . . . . . . . . . . . . . . . 12 Figure 5. Resonant circuit primary side waveforms at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 6. Resonant circuit primary side waveforms at no-load condition. . . . . . . . . . . . . . . . . . . . . . 13 Figure 7. Resonant circuit secondary side waveforms: +24V output . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 8. Resonant circuit secondary side waveforms: +12V output . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 9. Low frequency (100Hz) ripple voltage on the output voltages . . . . . . . . . . . . . . . . . . . . . . 14 Figure 10. Load transition (0 - 100%) on +24V output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 11. Load transition (0 - 100%) on +12V output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 12. +24V output short-circuit waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 13. Figure 14. +12V output short-circuit waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 15. Thermal map @115Vac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 16. Thermal map at 230 Vac - full load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 17. CE quasi peak measurement at 115 VAC and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 18. CE quasi peak measurement at 230 VAC and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 19. PFC coil electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 20. PFC coil pin side view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 21. Mechanical aspect and pin numbering of resonant transformer. . . . . . . . . . . . . . . . . . . . . 30 Figure 22. Resonant transformer electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 23. Resonant transformer winding position on coil former . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 24. Auxiliary transformer electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 25. Auxiliary transformer winding position on coil former . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 26. Copper tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 27. Thru-hole component placing and top silk screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 28. SMT component placing and bottom silk screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4/37
AN2393 Main characteristics and circuit description 1 Main characteristics and circuit description The main characteristics of the SMPS are listed below: ● ● Output voltages: Universal input mains range: 90 to 264 VAC and frequencies between 45 and 65 Hz – – – – 24V@6A continuous operation 12V@ 5A continuous operation 3.3V@ 0.7A continuous operation 5V@ 1A continuous operation St-by mains consumption: Typical 0.5W @230 VAC ● Mains harmonics: Compliance with EN61000-3-2 specifications ● ● Overall efficiency: better than 88% at full load ● EMI: Compliance with EN55022-class B specifications Safety: Compliance with EN60950 specifications PCB single layer: 132x265 mm, mixed PTH/SMT technologies ● ● The circuit consists of three stages. A front-end PFC pre-regulator implemented by the controller L6563 (Figure 1), a half-bridge resonant DC/DC converter based on the resonant controller L6599 (Figure 2) and a 7W flyback converter intended for stand-by management (Figure 3) utilizing the ViPer12A off-line primary switcher. The PFC stage delivers a stable 400 VDC supply and provides for the reduction of the mains harmonics, in order to meet the requirements of the European norm EN61000-3-2 and the JEIDA-MITI norm for Japan. The PFC controller is the L6563 (U1), working in FOT (fixed off-time) mode and integrating all functions needed to operate the PFC and interface the downstream resonant converter. Note: The FOT control is implemented through components C15, C17, D5, Q3, R14, R17 and R29 (see AN1792 for a complete description of a FOT PFC pre-regulator). The power stage of the PFC is a conventional boost converter, connected to the output of the rectifier bridge through a differential mode filtering cell (C5, C6 and L3) for EMI reduction. It includes a coil (L4), diode (D3) and two capacitors (C7 and C8). The boost switch is represented by the power MOSFET (Q2) which is directly driven by the L6563 output drive thanks to the high current capability of the IC. The divider (R30, R31 and R32) provides the L6563 (MULT Pin 3) with the information of the instantaneous voltage that is used to modulate the boost current and to derive some further information like the average value of the AC line used by the VFF (voltage feed-forward) function. This function is used to keep the output voltage almost independent of the mains one. The first divider (R3, R6, R8, R10 and R11) is dedicated to detecting the output voltage while the second divider (R5, R7, R9, R16 and R25) is used to protect the circuit in case of voltage loop fail. The second stage is an LLC resonant converter, with half bridge topology, working in ZVS (zero voltage switching) mode. The controller is the L6599 integrated circuit that incorporates the necessary functions to drive properly the two half-bridge MOSFETs by a 50 percent fixed duty cycle with dead-time, 5/37
Main characteristics and circuit description AN2393 changing the frequency according to the feedback signal in order to regulate the output voltages against load and input voltage variations. The main features of the L6599 are a non-linear soft-start, a current protection mode used to program the hiccup mode timing, a dedicated pin for sequencing or brown-out (LINE) and a stand-by pin (STBY) for burst mode operation at light loads (not used in this design). The transformer uses the magnetic integration approach, incorporating the resonant series and shunt inductances. Thus, no additional external coils are needed for the resonance. The transformer configuration chosen for the secondary winding is center-tap, and the output rectifiers are Schottky type diodes, in order to limit the power dissipation. The feedback loop is implemented by means of a classical configuration using a TL431 (U4) to adjust the current in the optocoupler diode (U3). A weighted resistive divider (R53, R57, R58, R60 and R61) is used to detect both output voltages in order to get a better overall voltage regulation. The optocoupler transistor modulates the current from Pin 4, so the frequency will change accordingly, thus achieving the output voltage regulation. Resistors R46 and R54 set the maximum operating frequency. In case of a short circuit, the current entering the primary winding is detected by the lossless circuit (C34, C39, D11, D12, R43, and R45) and the resulting signal is fed into Pin 6. In case of overload, the voltage on Pin 6 will overpass an internal threshold that triggers a protection sequence via Pin 2, keeping the current flowing in the circuit at a safe level. The third stage is a small flyback converter based on the VIPER12A, a current mode controller with integrated power MOSFET, capable of delivering (approximately) 7 W output power on the output voltages (5V and 3.3V). The regulated output voltage is the 3.3V output and, also in this case, the feedback loop bases on the TL431 (U7) and optocoupler (U6) to control the output voltage. This converter is able to operate in the whole mains voltage range, even when the PFC stage is not working. From the auxiliary winding on the primary side of the flyback transformer (T2), a voltage Vs is available, intended to supply the other controllers (L6563 and L6599) in addition to the VIPER12A itself. The PFC stage and the resonant converter can be switched on and off through the circuit based mainly on components Q7, Q8, D22 and U8, which, depending on the level of the signal ST-BY, supplies or removes the auxiliary voltage (VAUX) necessary to start-up the controllers of the PFC and resonant stages. In this way, when the AC input voltage is applied to the power supply, the small flyback converter switches on first; then, when the ST-BY signal is high, the PFC pre-regulator becomes operative, and last the resonant converter can deliver the output power to the load. Note that if Pin 9 of Connector J3 is left floating (no signal ST-BY present), the PFC and resonant converter will be not operating, and only +5V and +3.3V supplies are available on the output. In order to enable the +24V and +12V outputs, Pin 9 of Connector J3 must be pulled down to ground. 6/37
AN2393 Main characteristics and circuit description Figure 1. Auxiliary converter electrical diagram 3 J 0 1 2 3 4 5 6 7 8 9 1 0 1 N O C y b - t s V 5 + 3 V 3 + y b - t s V 5 + y B - t S V 0 1 / F u 0 0 1 V 0 1 / F u 0 0 0 1 6 4 C H u 3 3 5 4 C 2 2 8 5 N 1 5 1 D 8 L 6 1 D 6 7 8 - 0 2 E X U A - 9 4 C H u 3 3 7 4 C 1 2 8 5 N 1 V 0 1 / F u 0 0 1 V 0 1 / F u 0 0 0 1 0 1 - 9 7 L 2 T Y L F - T 5 4 2 1 6 3 1 - C K P 4 1 D 3 0 1 V A B 0 2 D V 0 5 / F u 0 1 0 5 C s V c d V V 0 0 4 + A 2 1 - R E P V I 5 U DDDD B S S F d d V V 0 3 - C 9 1 D V 0 1 - B 8 1 D 2 5 C F n 7 4 2 - A 7 1 6 H F S B 6 U 8 4 1 4 L L 7 1 D V 0 5 / F u 0 1 8 4 C F n 0 0 1 1 5 C 4 6 R 6 k 1 2 6 R 7 4 7 7 R 7 k 4 4 5 C F n 0 0 1 3 7 R 2 k 8 7 U 1 3 4 L T 7 6 R 0 k 1 3 5 C 2 F n 2 A 6 U 2 - A 7 1 6 H F S y b - t s V 5 + y B - t S V 4 2 + V 2 1 + 8 6 R k 2 2 6 7 R 5 k 1 2 8 R 5 k 1 1 7 R k 0 1 8 Q C 7 4 8 C B 5 7 R 1 2 D R 0 V 7 2 - B 3 2 D V 5 1 - B 9 7 R 0 k 1 6 6 R 0 k 1 9 6 R R 0 A 8 U 2 - A 7 1 6 H F S 2 7 R k 0 1 C 7 5 8 C B 9 Q F n 0 0 1 6 5 C 0 1 Q C 7 4 8 C B 2 - A 7 1 6 H F S B 8 U s V x u a V 4 7 R k 0 1 V 5 1 - C 2 2 D C 7 4 5 C B 7 Q 0 7 R R 2 2 V 0 5 / F u 0 1 5 5 C 7 5 C 0 F n 1 V 0 0 4 + c d V 3 8 R 0 M 1 4 8 R k 0 5 1 8 5 C F n 0 1 1 1 Q C 7 5 5 C B 7/37
Main characteristics and circuit description AN2393 Figure 2. PFC pre-regulator electrical diagram 6 0 4 5 N 1 1 D t c e r V c d V V 0 0 4 + V 0 5 4 / F u 0 2 2 8 C 9 C 1 Y - 2 F n 2 V 0 3 6 / F n 0 7 4 7 C 7 3 2 S - 5 R 2 C T N 6 0 R 8 H T T S H u 0 0 9 - 5 3 Q P 2 R 3 D 1-2 4 L 4-5 3 L 0 6 B X 5 1 D 2 D V 0 3 6 / F n 0 8 6 V 0 3 6 / F n 0 3 3 6 C 5 C A 3 - H u 2 7 - R S L - M D + - ~ ~ 2 X - F n 0 8 6 4 C 2 Y - 2 F n 2 1 1 C 0 1 C 2 Y - 2 F n 2 r e p m u J r e p m u J 2 X - F n 0 3 3 3 C A 3 - H m 5 - V 8 2 6 2 F T - M C 1 L V 0 5 2 A 3 / . 6 1 F 2 X - F n 0 0 1 2 C 1 R 5 M 1 1 J 1 2 N I - 2 N O C P F 0 5 M N 2 1 P T S 2 Q 4 2 R 3 2 R 2 2 R 8 6 R 0 8 6 R 0 8 6 R 0 1 2 R 2 R 2 6 D 8 4 1 4 L L 8 1 R 8 R 6 9 1 R k 1 F p 0 3 3 8 1 C S C 8 4 1 4 L L 5 D 5 1 C F p 0 0 1 4 1 R 5 k 1 7 1 R k 5 1 F p 0 2 2 7 1 C h c t a L - M W P 9 2 R 5 k 1 C 7 5 8 C B 3 Q 0 2 R 0 k 1 x u a V 4 R 7 4 V 0 5 / F u 0 1 3 1 C F n 0 0 1 2 1 C k 0 8 6 6 R k 0 8 6 8 R 1 1 R k 5 1 3 R k 0 8 6 0 1 R k 0 0 1 3 6 5 6 L 1 U C C V D G D N G D C Z N U R P O T S M W P - P M O C T L U M V N I S C F F V O B T H C T A L - M W P - K O C F P 6 2 R k 0 5 1 S C 3 1 R 6 1 C k 6 5 F u 1 4 1 C F n 0 0 1 9 1 C F n 0 1 5 R 2 M 2 7 R 2 M 2 9 R 2 M 2 6 1 R 1 k 5 5 2 R k 0 3 c d V E N L I 1 2 C 2 F n 2 8 2 R k 0 4 2 F n 0 7 4 0 2 C 2 2 C F n 0 1 2 3 R k 0 1 1 3 R 0 3 R k 0 2 6 k 0 2 6 t c e r V 8/37
分享到:
收藏