logo资料库

Bipedal Robots-Modeling, Design and Walking Synthesis.pdf

第1页 / 共338页
第2页 / 共338页
第3页 / 共338页
第4页 / 共338页
第5页 / 共338页
第6页 / 共338页
第7页 / 共338页
第8页 / 共338页
资料共338页,剩余部分请下载后查看
Bipedal Robots: Modeling, Design and Walking Synthesis
Table of Contents
Chapter 1. Bipedal Robots and Walking
1.1. Introduction
1.2. Biomechanical approach
1.2.1. Biomechanical system: a source of inspiration
1.2.2. Skeletal structure and musculature
1.3. Human walking
1.3.1. Architecture
1.3.2. Walking and running trajectory data
1.3.3. Study cases
1.4. Bipedal walking robots: state of the art
1.4.1. A brief history
1.4.2. Japanese studies and creations
1.4.3. The situation in France
1.4.4. General evolution tendencies
1.5. Different applications
1.5.1. Service robotics
1.5.2. Robotics and dangerous terrains
1.5.3. Toy robots and computer animation in cinema
1.5.4. Defense robotics
1.5.5. Medical prostheses
1.5.6. Surveillance robots
1.6. Conclusion
1.7. Bibliography
Chapter 2. Kinematic and Dynamic Models for Walking
2.1. Introduction
2.2. The kinematics of walking
2.2.1. DoF of the locomotion system
2.2.2. Walking patterns
2.2.3. Generalized coordinates for a sagittal step
2.2.4. Generalized coordinates for three-dimensional walking
2.2.5. Transition conditions
2.3. The dynamics of walking
2.3.1. Lagrangian dynamic model
2.3.2. Newton-Euler’s dynamic model
2.3.3. Impact model
2.4. Dynamic constraints
2.4.1. CoP and equilibrium constraints
2.4.2. Non-sliding constraints
2.5. Complementary feasibility constraints
2.5.1. Respecting the technological limitations
2.5.2. Non-collision constraints
2.6. Conclusion
2.7. Bibliography
Chapter 3. Design Tools for Making Bipedal Robots
3.1. Introduction
3.2. Study of influence of robot body masses
3.2.1. Case 1: the three-link robot
3.2.2. Case 2: the five-link robot
3.3. Mechanical design: the architectures carried out
3.3.1. The structure of planar robots
3.3.2. 3D robot structures
3.3.3. Technology of inter-body joints
3.3.4. Drive technology
3.4. Actuators
3.4.1. Actuator types
3.4.2. Characteristics of electric actuators
3.4.3. Elements of choice for robotic actuators
3.4.4. Comparing actuator performances
3.4.5. Performances of transmission-actuator associations
3.5. Sensors
3.5.1. Measuring
3.5.2. Frequently used sensors
3.5.3. Characteristics and integration
3.5.4. Sensors of inertial localization
3.6. Conclusion
3.7. Appendix
3.7.1. Geometric model
3.7.2. Dynamic model
3.8. Bibliography
Chapter 4. Walking Pattern Generators
4.1. Introduction
4.2. Passive and quasi-passive dynamic walking
4.2.1. Passive walking
4.2.2. Quasi-passive dynamic walking
4.3. Static balance walking
4.4. Dynamic synthesis of walking
4.4.1. Performance criteria for walking synthesis
4.4.2. Formalizing the problem of dynamic optimization
4.5. Walking synthesis via parametric optimization
4.5.1. Approximating the control variables
4.5.2. Parameterizing the configuration variables
4.5.3. Parameterizing the Lagrange multipliers
4.5.4. Formulation of the parametric optimization problem
4.5.5. A parametric optimization example
4.6. Conclusion
4.7. Bibliography
Chapter 5. Control
5.1. Introduction
5.2. Hybrid systems and stability study
5.3. Taking into account the unilateralism of the contact constraint
5.3.1. Computed torque control
5.4. Online modification of references
5.4.1. General principle
5.4.2. The ZMP’s imposed evolution
5.4.3. Bounded evolution of the ZMP
5.5. Taking an under-actuated phase into account
5.6. Taking the double support phase into account
5.7. Intuitive and neural network methods
5.7.1. Intuitive methods
5.7.2. Neural network method
5.8. Passive movements
5.9. Conclusion
5.10. Bibliography
Index
This page intentionally left blank
Bipedal Robots
This page intentionally left blank
Bipedal Robots Modeling, Design and Walking Synthesis Edited by Christine Chevallereau Guy Bessonnet Gabriel Abba Yannick Aoustin
First published in France in 2007 by Hermes Science/Lavoisier entitles: Les robots marcheurs bipèdes : modélisation, conception, synthèse de la marche © LAVOISIER, 2007 First published in Great Britain and the United States in 2009 by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd 27-37 St George’s Road London SW19 4EU UK www.iste.co.uk © ISTE Ltd, 2009 John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA www.wiley.com The rights of Christine Chevallereau, Guy Bessonnet, Gabriel Abba and Yannick Aoustin to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Cataloging-in-Publication Data [Robots marcheurs bipèdes. English] Bipedal robots : modeling, design and walking synthesis / edited by Christine Chevallereau ... [et al.] p. cm. Includes bibliographical references and index. ISBN 978-1-84821-076-9 1. Robots--Motion. 2. Walking. I. Chevallereau, Christine. II. Title. TJ211.4.R6313 2008 629.8'932--dc22 2008035231 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN: 978-1-84821-076-9 Printed and bound in Great Britain by CPI Antony Rowe Ltd, Chippenham, Wiltshire.
Table of Contents Chapter 1. Bipedal Robots and Walking 1.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2. Biomechanical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1. Biomechanical system: a source of inspiration . . . . . . . . . . . . 1.2.2. Skeletal structure and musculature. . . . . . . . . . . . . . . . . . . . 1.3. Human walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2. Walking and running trajectory data. . . . . . . . . . . . . . . . . . . 1.3.3. Study cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4. Bipedal walking robots: state of the art . . . . . . . . . . . . . . . . . . . 1.4.1. A brief history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2. Japanese studies and creations . . . . . . . . . . . . . . . . . . . . . . 1.4.3. The situation in France. . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.4. General evolution tendencies . . . . . . . . . . . . . . . . . . . . . . . 1.5. Different applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1. Service robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.2. Robotics and dangerous terrains . . . . . . . . . . . . . . . . . . . . . 1.5.3. Toy robots and computer animation in cinema . . . . . . . . . . . . 1.5.4. Defense robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.5. Medical prostheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.6. Surveillance robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2 9 11 11 13 18 21 21 24 27 31 32 33 35 35 37 39 40 40 41 Chapter 2. Kinematic and Dynamic Models for Walking 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2. The kinematics of walking . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1. DoF of the locomotion system . . . . . . . . . . . . . . . . . . . . . . 2.2.2. Walking patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 48 48 49
vi Bipedal Robots 2.2.3. Generalized coordinates for a sagittal step . . . . . . . . . . . . . . . 2.2.4. Generalized coordinates for three-dimensional walking . . . . . . . 2.2.5. Transition conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3. The dynamics of walking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1. Lagrangian dynamic model . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2. Newton-Euler’s dynamic model . . . . . . . . . . . . . . . . . . . . . 2.3.3. Impact model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4. Dynamic constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1. CoP and equilibrium constraints . . . . . . . . . . . . . . . . . . . . . 2.4.2. Non-sliding constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5. Complementary feasibility constraints . . . . . . . . . . . . . . . . . . . . 2.5.1. Respecting the technological limitations . . . . . . . . . . . . . . . . 2.5.2. Non-collision constraints . . . . . . . . . . . . . . . . . . . . . . . . . 2.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 3. Design Tools for Making Bipedal Robots 3.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2. Study of influence of robot body masses . . . . . . . . . . . . . . . . . . 3.2.1. Case 1: the three-link robot . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2. Case 2: the five-link robot. . . . . . . . . . . . . . . . . . . . . . . . . 3.3. Mechanical design: the architectures carried out . . . . . . . . . . . . . . 3.3.1. The structure of planar robots . . . . . . . . . . . . . . . . . . . . . . 3.3.2. 3D robot structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3. Technology of inter-body joints . . . . . . . . . . . . . . . . . . . . . 3.3.4. Drive technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4. Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1. Actuator types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2. Characteristics of electric actuators . . . . . . . . . . . . . . . . . . . 3.4.3. Elements of choice for robotic actuators . . . . . . . . . . . . . . . . 3.4.4. Comparing actuator performances . . . . . . . . . . . . . . . . . . . . 3.4.5. Performances of transmission-actuator associations . . . . . . . . . 3.5. Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1. Measuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2. Frequently used sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.3. Characteristics and integration . . . . . . . . . . . . . . . . . . . . . . 3.5.4. Sensors of inertial localization . . . . . . . . . . . . . . . . . . . . . . 3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.1. Geometric model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.2. Dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 57 66 70 71 87 98 103 103 116 117 118 119 123 123 127 128 129 147 165 165 168 172 174 181 181 186 190 193 202 207 207 208 209 210 212 213 213 213 215
分享到:
收藏