Bipedal Robots: Modeling, Design and Walking Synthesis
Table of Contents
Chapter 1. Bipedal Robots and Walking
1.1. Introduction
1.2. Biomechanical approach
1.2.1. Biomechanical system: a source of inspiration
1.2.2. Skeletal structure and musculature
1.3. Human walking
1.3.1. Architecture
1.3.2. Walking and running trajectory data
1.3.3. Study cases
1.4. Bipedal walking robots: state of the art
1.4.1. A brief history
1.4.2. Japanese studies and creations
1.4.3. The situation in France
1.4.4. General evolution tendencies
1.5. Different applications
1.5.1. Service robotics
1.5.2. Robotics and dangerous terrains
1.5.3. Toy robots and computer animation in cinema
1.5.4. Defense robotics
1.5.5. Medical prostheses
1.5.6. Surveillance robots
1.6. Conclusion
1.7. Bibliography
Chapter 2. Kinematic and Dynamic Models for Walking
2.1. Introduction
2.2. The kinematics of walking
2.2.1. DoF of the locomotion system
2.2.2. Walking patterns
2.2.3. Generalized coordinates for a sagittal step
2.2.4. Generalized coordinates for three-dimensional walking
2.2.5. Transition conditions
2.3. The dynamics of walking
2.3.1. Lagrangian dynamic model
2.3.2. Newton-Euler’s dynamic model
2.3.3. Impact model
2.4. Dynamic constraints
2.4.1. CoP and equilibrium constraints
2.4.2. Non-sliding constraints
2.5. Complementary feasibility constraints
2.5.1. Respecting the technological limitations
2.5.2. Non-collision constraints
2.6. Conclusion
2.7. Bibliography
Chapter 3. Design Tools for Making Bipedal Robots
3.1. Introduction
3.2. Study of influence of robot body masses
3.2.1. Case 1: the three-link robot
3.2.2. Case 2: the five-link robot
3.3. Mechanical design: the architectures carried out
3.3.1. The structure of planar robots
3.3.2. 3D robot structures
3.3.3. Technology of inter-body joints
3.3.4. Drive technology
3.4. Actuators
3.4.1. Actuator types
3.4.2. Characteristics of electric actuators
3.4.3. Elements of choice for robotic actuators
3.4.4. Comparing actuator performances
3.4.5. Performances of transmission-actuator associations
3.5. Sensors
3.5.1. Measuring
3.5.2. Frequently used sensors
3.5.3. Characteristics and integration
3.5.4. Sensors of inertial localization
3.6. Conclusion
3.7. Appendix
3.7.1. Geometric model
3.7.2. Dynamic model
3.8. Bibliography
Chapter 4. Walking Pattern Generators
4.1. Introduction
4.2. Passive and quasi-passive dynamic walking
4.2.1. Passive walking
4.2.2. Quasi-passive dynamic walking
4.3. Static balance walking
4.4. Dynamic synthesis of walking
4.4.1. Performance criteria for walking synthesis
4.4.2. Formalizing the problem of dynamic optimization
4.5. Walking synthesis via parametric optimization
4.5.1. Approximating the control variables
4.5.2. Parameterizing the configuration variables
4.5.3. Parameterizing the Lagrange multipliers
4.5.4. Formulation of the parametric optimization problem
4.5.5. A parametric optimization example
4.6. Conclusion
4.7. Bibliography
Chapter 5. Control
5.1. Introduction
5.2. Hybrid systems and stability study
5.3. Taking into account the unilateralism of the contact constraint
5.3.1. Computed torque control
5.4. Online modification of references
5.4.1. General principle
5.4.2. The ZMP’s imposed evolution
5.4.3. Bounded evolution of the ZMP
5.5. Taking an under-actuated phase into account
5.6. Taking the double support phase into account
5.7. Intuitive and neural network methods
5.7.1. Intuitive methods
5.7.2. Neural network method
5.8. Passive movements
5.9. Conclusion
5.10. Bibliography
Index