logo资料库

Orbital Mechanics for Engineering Students.pdf

第1页 / 共741页
第2页 / 共741页
第3页 / 共741页
第4页 / 共741页
第5页 / 共741页
第6页 / 共741页
第7页 / 共741页
第8页 / 共741页
资料共741页,剩余部分请下载后查看
cover
title page
copyright page
contents
preface
acknowledgments
CHAPTER 1 Dynamics of point masses
1.1 Introduction
1.2 Vectors
1.3 Kinematics
1.4 Mass, force and Newton's law of gravitation
1.5 Newton's law of motion
1.6 Time derivatives of moving vectors
1.7 Relative motion
1.8 Numerical integration
1.8.1 Runge-Kutta methods
1.8.2 Heun's Predictor-Corrector method
1.8.3 Runge-Kutta with variable step size
Problems
List of Key Terms
CHAPTER 2 The two-body problem
2.1 Introduction
2.2 Equations of motion in an inertial frame
2.3 Equations of relative motion
2.4 Angular momentum and the orbit formulas
2.5 The energy law
2.6 Circular orbits (e = 0)
2.7 Elliptical orbits (0 < e < 1)
2.8 Parabolic trajectories (e = 1)
2.9 Hyperbolic trajectories (e > 1)
2.10 Perifocal frame
2.11 The lagrange coefficients
2.12 Restricted three-body problem
2.12.1 Lagrange points
2.12.2 Jacobi constant
Problems
List of Key Terms
CHAPTER 3 Orbital position as a function of time
3.1 Introduction
3.2 Time since periapsis
3.3 Circular orbits (e = 0)
3.4 Elliptical orbits (e < 1)
3.5 Parabolic trajectories (e = 1)
3.6 Hyperbolic trajectories (e < 1)
3.7 Universal variables
Problems
List of Key Terms
CHAPTER 4 Orbits in three dimensions
4.1 Introduction
4.2 Geocentric right ascension-declination frame
4.3 State vector and the geocentric equatorial frame
4.4 Orbital elements and the state vector
4.5 Coordinate transformation
4.6 Transformation between geocentric equatorial and perifocal frames
4.7 Effects of the Earth's oblateness
4.8 Ground tracks
Problems
List of Key Terms
CHAPTER 5 Preliminary orbit determination
5.1 Introduction
5.2 Gibbs method of orbit determination from three position vectors
5.3 Lambert's problem
5.4 Sidereal time
5.5 Topocentric coordinate system
5.6 Topocentric equatorial coordinate system
5.7 Topocentric horizon coordinate system
5.8 Orbit determination from angle and range measurements
5.9 Angles only preliminary orbit determination
5.10 Gauss method of preliminary orbit determination
Problems
List of Key Terms
CHAPTER 6 Orbital maneuvers
6.1 Introduction
6.2 Impulsive maneuvers
6.3 Hohmann transfer
6.4 Bi-elliptic Hohmann transfer
6.5 Phasing maneuvers
6.6 Non-Hohmann transfers with a common apse line
6.7 Apse line rotation
6.8 Chase maneuvers
6.9 Plane change maneuvers
6.10 Nonimpulsive orbital maneuvers
Problems
List of Key Terms
CHAPTER 7 Relative motion and rendezvous
7.1 Introduction
7.2 Relative motion in orbit
7.3 Linearization of the equations of relative motion in orbit
7.4 Clohessy-Wiltshire equations
7.5 Two-impulse rendezvous maneuvers
7.6 Relative motion in close-proximity circular orbits
Problems
List of Key Terms
CHAPTER 8 Interplanetary trajectories
8.1 Introduction
8.2 Interplanetary Hohmann transfers
8.3 Rendezvous Opportunities
8.4 Sphere of influence
8.5 Method of patched conics
8.6 Planetary departure
8.7 Sensitivity analysis
8.8 Planetary rendezvous
8.9 Planetary flyby
8.10 Planetary ephemeris
8.11 Non-Hohmann interplanetary trajectories
Problems
List of Key Terms
CHAPTER 9 Rigid-body dynamics
9.1 Introduction
9.2 Kinematics
9.3 Equations of translational motion
9.4 Equations of rotational motion
9.5 Moments of inertia
9.5.1 Parallel axis theorem
9.6 Euler's equations
9.7 Kinetic energy
9.8 The spinning top
9.9 Euler angles
9.10 Yaw, pitch and roll angles
9.11 Quaternions
Problems
List of Key Terms
CHAPTER 10 Satellite attitude dynamics
10.1 Introduction
10.2 Torque-free motion
10.3 Stability of torque-free motion
10.4 Dual-spin spacecraft
10.5 Nutation damper
10.6 Coning maneuver
10.7 Attitude control thrusters
10.8 Yo-yo despin mechanism
10.8.1 Radial release
10.9 Gyroscopic attitude control
10.10 Gravity gradient stabilization
Problems
List of Key Terms
CHAPTER 11 Rocket vehicle dynamics
11.1 Introduction
11.2 Equations of motion
11.3 The thrust equation
11.4 Rocket performance
11.5 Restricted staging in field-free space
11.6 Optimal staging
11.6.1 Lagrange multiplier
Problems
List of Key Terms
Appendix A Physical data
Appendix B A road map
Appendix C Numerical intergration of the n-body equations of motion
Appendix D MATLAB® algorithms
Appendix E Gravitational potential energy of a sphere
References
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
Y
Z
Orbital Mechanics for Engineering Students
This page intentionally left blank
Orbital Mechanics for Engineering Students Second Edition Howard D. Curtis Professor of Aerospace Engineering Embry -Riddle Aeronautical University Daytona Beach, Florida AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier
Butterworth -Heinemann is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK © 2010 Elsevier Ltd. All rights reserved . No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions . This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). MATLAB ® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB ® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB ® software. Notices Knowledge and best practice in this fi eld are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. Library of Congress Cataloging-in-Publication Data Application submitted British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ISBN : 978-0-12-374778-5 (Case bound) ISBN: 978-1-85617-954-6 (Case bound with on line testing) For information on all Butterworth – Heinemann publications visit our Web site at www.elsevierdirect.com Printed in the United States of America 09 10 11 12 13 10 9 8 7 6 5 4 3 2 1
To my parents, Rondo and Geraldine.
This page intentionally left blank
Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv CHAPTER 1 Dynamics of point masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Mass, force and Newton’s law of gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5 Newton’s law of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6 Time derivatives of moving vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.7 Relative motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.8 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.8.1 Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.8.2 Heun’s Predictor-Corrector method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.8.3 Runge-Kutta with variable step size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 List of Key Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 CHAPTER 2 The two-body problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.2 Equations of motion in an inertial frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.3 Equations of relative motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.4 Angular momentum and the orbit formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.5 The energy law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.6 Circular orbits (e ⫽ 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.7 Elliptical orbits (0 < e < 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.8 Parabolic trajectories (e ⫽ 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 2.9 Hyperbolic trajectories (e > 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 2.10 Perifocal frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 2.11 The lagrange coeffi cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2.12 Restricted three-body problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 2.12.1 Lagrange points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 2.12.2 Jacobi constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 List of Key Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
分享到:
收藏