logo资料库

Knowledge-based_clustering_From Data to Information Granules.pdf

第1页 / 共337页
第2页 / 共337页
第3页 / 共337页
第4页 / 共337页
第5页 / 共337页
第6页 / 共337页
第7页 / 共337页
第8页 / 共337页
资料共337页,剩余部分请下载后查看
Cover
Contents
Foreword
Preface
Clustering and Fuzzy Clustering
1.1. INTRODUCTION
1.2. BASIC NOTIONS AND NOTATION
1.2.1. Types of Data
1.2.2. Distance and Similarity
1.3. MAIN CATEGORIES OF CLUSTERING ALGORITHMS
1.3.1. Hierarchical Clustering
1.3.2. Objective Function-Based Clustering
1.4. CLUSTERING AND CLASSIFICATION
1.5. FUZZY CLUSTERING
1.6. CLUSTER VALIDITY
1.7. EXTENSIONS OF OBJECTIVE FUNCTION-BASED
1.7.1. Augmented Geometry of Fuzzy Clusters: Fuzzy C Varieties
1.7.2. Possibilistic Clustering
1.7.3. Noise Clustering
1.8. SELF-ORGANIZING MAPS AND FUZZY OBJECTIVE
1.9. CONCLUSIONS
Logic-Oriented Neurocomputing
3.1. INTRODUCTION
3.2. MAIN CATEGORIES OF FUZZY NEURONS
3.2.1. Aggregative Neurons
3.2.2. Referential (Reference) Neurons
3.3. ARCHITECTURES OF LOGIC NETWORKS
3.4. INTERPRETATION ASPECTS OF THE NETWORKS
3.5. GRANULAR INTERFACES OF LOGIC PROCESSING
3.6. CONCLUSIONS
Conditional Fuzzy Clustering
4.1. INTRODUCTION
4.2. PROBLEM STATEMENT: CONTEXT FUZZY SETS
4.3. THE OPTIMIZATION PROBLEM
4.4. COMPUTATIONAL CONSIDERATIONS
4.5. GENERALIZATIONS OF THE ALGORITHM THROUGH
4.6. FUZZY CLUSTERING WITH SPATIAL CONSTRAINTS
4.7. CONCLUSIONS
Principles of Knowledge-Based Guidance in Fuzzy Clustering
6.1. INTRODUCTION
6.2. EXAMPLES OF KNOWLEDGE-ORIENTED HINTS
6.3. THE OPTIMIZATION ENVIRONMENT
6.4. QUANTIFICATION OF KNOWLEDGE-BASED GUIDANCE HINTS
6.5. ORGANIZATION OF THE INTERACTION PROCESS
6.6. PROXIMITY-BASED CLUSTERING (P-FCM)
6.7. WEB EXPLORATION AND P-FCM
6.8. LINGUISTIC AUGMENTATION OF KNOWLEDGE-BASED HINTS
6.9. CONCLUSIONS
Collaborative Clustering
7.1. INTRODUCTION AND RATIONALE
7.2. HORIZONTAL AND VERTICAL CLUSTERING
7.3. HORIZONTAL COLLABORATIVE CLUSTERING
7.3.1. Optimization Details
7.3.2. The Flow of Computing of Collaborative Clustering
7.3.3. Quantification of the Collaborative Phenomenon of Clustering
7.4. EXPERIMENTAL STUDIES
7.5. FURTHER ENHANCEMENTS OF HORIZONTAL CLUSTERING
7.6. THE ALGORITHM OF VERTICAL CLUSTERING
7.7. A GRID MODEL OF HORIZONTAL AND VERTICAL
7.8. CONSENSUS CLUSTERING
7.9. CONCLUSIONS
Directional Clustering
8.1. INTRODUCTION
8.2. PROBLEM FORMULATION
8.2.1. The Objective Function
8.2.2. The Logic Transformation Between Information Granules
8.3. THE ALGORITHM
8.4. THE DEVELOPMENT FRAMEWORK
8.5. NUMERICAL STUDIES
8.6. CONCLUSIONS
Fuzzy Relational Clustering
9.1. INTRODUCTION AND PROBLEM STATEMENT
9.2. FCM FOR RELATIONAL DATA
9.3. DECOMPOSITION OF FUZZY RELATIONAL PATTERNS
9.3.1. Gradient-Based Solution to the Decomposition Problem
9.3.2. Neural Network Model of the Decomposition Problem
9.4. COMPARATIVE ANALYSIS
9.5. CONCLUSIONS
Fuzzy Clustering of Heterogeneous Patterns
10.1. INTRODUCTION
10.2. HETEROGENEOUS DATA
10.3. PARAMETRIC MODELS OF GRANULAR DATA
10.4. PARAMETRIC MODE OF HETEROGENEOUS
10.5. NONPARAMETRIC HETEROGENEOUS CLUSTERING
10.5.1. A Frame of Reference
10.5.2. Representation of Granular Data Through the Possibility-Necessity
10.5.3. Dereferencing
10.6. CONCLUSIONS
Hyperbox Models of Granular Data: The Tchebyschev FCM
11.1. INTRODUCTION
11.2. PROBLEM FORMULATION
11.3. THE CLUSTERING ALGORITHM—DETAILED
11.4. DEVELOPMENT OF GRANULAR PROTOTYPES
11.5. GEOMETRY OF INFORMATION GRANULES
11.6. GRANULAR DATA DESCRIPTION: A GENERAL MODEL
11.7. CONCLUSIONS
Genetic Tolerance Fuzzy Neural Networks
12.1. INTRODUCTION
12.2. OPERATIONS OF THRESHOLDING AND TOLERANCE:
12.3. TOPOLOGY OF THE LOGIC NETWORK
12.4. GENETIC OPTIMIZATION
12.5. ILLUSTRATIVE NUMERIC STUDIES
12.6. CONCLUSIONS
Granular Prototyping
13.1. INTRODUCTION
13.2. PROBLEM FORMULATION
13.2.1. Expressing Similarity Between Two Fuzzy Sets
13.2.2. Performance Index (Objective Function)
13.3. PROTOTYPE OPTIMIZATION
13.4. DEVELOPMENT OF GRANULAR PROTOTYPES
13.4.1. Optimization of the Similarity Levels
13.4.2. An Inverse Similarity Problem
13.5. CONCLUSIONS
Granular Mappings
14.1. INTRODUCTION AND PROBLEM STATEMENT
14.2. POSSIBILITY AND NECESSITY MEASURES AS THE
14.3. BUILDING THE GRANULAR MAPPING
14.4. DESIGNING MULTIVARIABLE GRANULAR MAPPINGS
14.5. QUANTIFICATION OF GRANULAR MAPPINGS
14.6. EXPERIMENTAL STUDIES
14.7. CONCLUSIONS
Linguistic Modeling
15.1. INTRODUCTION
15.2. CLUSTER-BASED REPRESENTATION
15.3. CONDITIONAL CLUSTERING IN THE DEVELOPMENT
15.4. THE GRANULAR NEURON AS A GENERIC PROCESSING
15.5. THE ARCHITECTURE OF LINGUISTIC MODELS BASED
15.6. REFINEMENTS OF LINGUISTIC MODELS
15.7. CONCLUSIONS
Bibliography
Index
KNOWLEDGE-BASEDCLUSTERINGFromDatatoInformationGranulesWitoldPedryczDepartmentofElectricalandComputerEngineeringUniversityofAlbertaEdmonton,CanadaandSystemsResearchInstitutePolishAcademyofSciencesWarsaw,PolandAJOHNWILEY&SONS,INC.,PUBLICATION
KNOWLEDGE-BASEDCLUSTERING
KNOWLEDGE-BASEDCLUSTERINGFromDatatoInformationGranulesWitoldPedryczDepartmentofElectricalandComputerEngineeringUniversityofAlbertaEdmonton,CanadaandSystemsResearchInstitutePolishAcademyofSciencesWarsaw,PolandAJOHNWILEY&SONS,INC.,PUBLICATION
Copyright2005byJohnWiley&Sons,Inc.Allrightsreserved.PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.PublishedsimultaneouslyinCanada.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008.LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.ForgeneralinformationonourotherproductsandservicespleasecontactourCustomerCareDepartmentwithintheU.S.at877-762-2974,outsidetheU.S.at317-572-3993orfax317-572-4002.Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint,however,maynotbeavailableinelectronicformat.LibraryofCongressCataloging-in-PublicationData:Pedrycz,Witold,1953-Knowledge-basedclustering:fromdatatoinformationgranules/WitoldPedrycz.p.cm.“AWiley-Intersciencepublication.”Includesbibliographicalreferencesandindex.ISBN0-471-46966-1(cloth)1.Softcomputing.2.Granularcomputing.3.Fuzzysystems.I.Title.QA76.9.S63P452005006.3–dc22PrintedintheUnitedStatesofAmerica10987654321MA01923,978-750-8400,fax978-646-8600,oronthewebatwww.copyright.com.Requeststo
ToEwa,Adam,andBarbara
分享到:
收藏