logo资料库

TSDF Volume Reconstruction.pdf

第1页 / 共35页
第2页 / 共35页
第3页 / 共35页
第4页 / 共35页
第5页 / 共35页
第6页 / 共35页
第7页 / 共35页
第8页 / 共35页
资料共35页,剩余部分请下载后查看
Introduction
Approach
Results
Computer Vision Group TSDF Volume Reconstruction Martin Herrmann Simon Trendel Neeraj Sujan Technische Universit¨at M¨unchen Department of Informatics Computer Vision Group October 5, 2015 Martin Herrmann Simon Trendel Neeraj Sujan: TSDF Volume Reconstruction 1 / 19
Computer Vision Group Outline 1 Introduction 2 Approach 3 Results Martin Herrmann Simon Trendel Neeraj Sujan: TSDF Volume Reconstruction 2 / 19
Computer Vision Group Outline 1 Introduction 2 Approach 3 Results Martin Herrmann Simon Trendel Neeraj Sujan: TSDF Volume Reconstruction 3 / 19
Computer Vision Group Introduction Reconstruct 3D voxel grid from multiple input frames Frames consist of color (RGB) and depth images Must be fast enough to use in real-time with a Kinect (or a similar sensor) Martin Herrmann Simon Trendel Neeraj Sujan: TSDF Volume Reconstruction 4 / 19
Computer Vision Group Introduction Reconstruct 3D voxel grid from multiple input frames Frames consist of color (RGB) and depth images Must be fast enough to use in real-time with a Kinect (or a similar sensor) Martin Herrmann Simon Trendel Neeraj Sujan: TSDF Volume Reconstruction 4 / 19
Computer Vision Group Introduction Reconstruct 3D voxel grid from multiple input frames Frames consist of color (RGB) and depth images Must be fast enough to use in real-time with a Kinect (or a similar sensor) Martin Herrmann Simon Trendel Neeraj Sujan: TSDF Volume Reconstruction 4 / 19
Computer Vision Group Outline 1 Introduction 2 Approach 3 Results Martin Herrmann Simon Trendel Neeraj Sujan: TSDF Volume Reconstruction 5 / 19
Computer Vision Group The Pipeline Bilateral Filter Calculate Normals ICP t + 1 TSDF Integration Raycasting Martin Herrmann Simon Trendel Neeraj Sujan: TSDF Volume Reconstruction 6 / 19
分享到:
收藏