logo资料库

Probabilistic Robotics .pdf

第1页 / 共492页
第2页 / 共492页
第3页 / 共492页
第4页 / 共492页
第5页 / 共492页
第6页 / 共492页
第7页 / 共492页
第8页 / 共492页
资料共492页,剩余部分请下载后查看
PROBABILISTIC ROBOTICS Sebastian THRUN Stanford University Stanford, CA Wolfram BURGARD University of Freiburg Freiburg, Germany Dieter FOX University of Washington Seattle, WA EARLY DRAFT—NOT FOR DISTRIBUTION cSebastian Thrun, Dieter Fox, Wolfram Burgard, 1999-2000
CONTENTS 1 2 INTRODUCTION 1.1 Uncertainty in Robotics 1.2 1.3 1.4 Road Map 1.5 Bibliographical Remarks Probabilistic Robotics Implications Introduction RECURSIVE STATE ESTIMATION 2.1 2.2 Basic Concepts in Probability 2.3 Robot Environment Interaction 2.3.1 State 2.3.2 Environment Interaction 2.3.3 Probabilistic Generative Laws 2.3.4 Belief Distributions 2.4 Bayes Filters 2.4.1 The Bayes Filter Algorithm 2.4.2 Example 2.4.3 Mathematical Derivation of the Bayes Filter 2.4.4 The Markov Assumption 2.5 Representation and Computation 2.6 2.7 Bibliographical Remarks Summary 3 GAUSSIAN FILTERS Introduction 3.1 3.2 The Kalman Filter v 1 1 3 5 6 7 9 9 10 16 16 18 20 22 23 23 24 28 30 30 31 32 33 33 34
vi PROBABILISTIC ROBOTICS 3.2.1 Linear Gaussian Systems 3.2.2 The Kalman Filter Algorithm 3.2.3 Illustration 3.2.4 Mathematical Derivation of the KF 3.3 The Extended Kalman Filter 3.3.1 Linearization Via Taylor Expansion 3.3.2 The EKF Algorithm 3.3.3 Mathematical Derivation of the EKF 3.3.4 Practical Considerations 3.4 The Information Filter 3.4.1 Canonical Representation 3.4.2 The Information Filter Algorithm 3.4.3 Mathematical Derivation of the Information Filter 3.4.4 The Extended Information Filter Algorithm 3.4.5 Mathematical Derivation of the Extended Information Filter 3.4.6 Practical Considerations Summary 3.5 3.6 Bibliographical Remarks 4 NONPARAMETRIC FILTERS 4.1 The Histogram Filter 4.1.1 The Discrete Bayes Filter Algorithm 4.1.2 Continuous State 4.1.3 Decomposition Techniques 4.1.4 Binary Bayes Filters With Static State 4.2 The Particle Filter 4.2.1 Basic Algorithm 4.2.2 Importance Sampling 4.2.3 Mathematical Derivation of the PF 4.2.4 Properties of the Particle Filter Summary 4.3 4.4 Bibliographical Remarks 5 ROBOT MOTION 5.1 Introduction 34 36 37 39 48 49 50 51 53 55 55 57 58 60 61 62 64 65 67 68 69 69 73 74 77 77 80 82 84 89 90 91 91
Contents 5.2 Preliminaries 5.2.1 Kinematic Configuration 5.2.2 Probabilistic Kinematics 5.3 Velocity Motion Model 5.3.1 Closed Form Calculation 5.3.2 Sampling Algorithm 5.3.3 Mathematical Derivation 5.4 Odometry Motion Model 5.4.1 Closed Form Calculation 5.4.2 Sampling Algorithm 5.4.3 Mathematical Derivation 5.5 Motion and Maps 5.6 5.7 Bibliographical Remarks Summary 6 MEASUREMENTS Introduction 6.1 6.2 Maps 6.3 Beam Models of Range Finders 6.3.1 The Basic Measurement Algorithm 6.3.2 Adjusting the Intrinsic Model Parameters 6.3.3 Mathematical Derivation 6.3.4 Practical Considerations 6.4 Likelihood Fields for Range Finders 6.4.1 Basic Algorithm 6.4.2 Extensions 6.5 Correlation-Based Sensor Models 6.6 Feature-Based Sensor Models 6.6.1 Feature Extraction 6.6.2 Landmark Measurements 6.6.3 Sensor Model With Known Correspondence 6.6.4 Sampling Poses 6.6.5 Further Considerations Practical Considerations Summary 6.7 6.8 vii 92 92 93 95 95 96 99 107 108 111 113 114 118 119 121 121 123 124 124 129 134 138 139 139 143 145 147 147 148 149 150 152 153 154
viii PROBABILISTIC ROBOTICS 7 MOBILE ROBOT LOCALIZATION Introduction Illustration of Markov Localization 7.1 7.2 A Taxonomy of Localization Problems 7.3 Markov Localization 7.4 7.5 EKF Localization 7.5.1 Illustration 7.5.2 The EKF Localization Algorithm 7.5.3 Mathematical Derivation 7.6 Estimating Correspondences 7.6.1 EKF Localization with Unknown Correspondences 7.6.2 Mathematical Derivation 7.7 Multi-Hypothesis Tracking 7.8 7.9 Practical Considerations Summary 8 GRID AND MONTE CARLO LOCALIZATION Introduction 8.1 8.2 Grid Localization 8.2.1 Basic Algorithm 8.2.2 Grid Resolutions 8.2.3 Computational Considerations 8.2.4 Illustration 8.3 Monte Carlo Localization 8.3.1 The MCL Algorithm 8.3.2 Properties of MCL 8.3.3 Random Particle MCL: Recovery from Failures 8.3.4 Modifying the Proposal Distribution 8.4 Localization in Dynamic Environments Practical Considerations 8.5 8.6 Summary 8.7 Exercises 9 OCCUPANCY GRID MAPPING Introduction 9.1 9.2 The Occupancy Grid Mapping Algorithm 157 157 158 162 164 166 167 168 170 174 174 176 179 181 184 187 187 188 188 189 193 195 200 200 201 204 209 211 216 218 219 221 221 224
Contents 9.2.1 Multi-Sensor Fusion 9.3 Learning Inverse Measurement Models 9.3.1 Inverting the Measurement Model 9.3.2 Sampling from the Forward Model 9.3.3 The Error Function 9.3.4 Further Considerations 9.4 Maximum A Posterior Occupancy Mapping 9.4.1 The Case for Maintaining Dependencies 9.4.2 Occupancy Grid Mapping with Forward Models Summary 9.5 10 SIMULTANEOUS LOCALIZATION AND MAPPING 10.1 Introduction 10.2 SLAM with Extended Kalman Filters 10.2.1 Setup and Assumptions 10.2.2 SLAM with Known Correspondence 10.2.3 Mathematical Derivation 10.3 EKF SLAM with Unknown Correspondences 10.3.1 The General EKF SLAM Algorithm 10.3.2 Examples 10.3.3 Feature Selection and Map Management 10.4 Summary 10.5 Bibliographical Remarks 10.6 Projects 11 THE EXTENDED INFORMATION FORM ALGORITHM 11.1 Introduction 11.2 Intuitive Description 11.3 The EIF SLAM Algorithm 11.4 Mathematical Derivation 11.4.1 The Full SLAM Posterior 11.4.2 Taylor Expansion 11.4.3 Constructing the Information Form 11.4.4 Reducing the Information Form ix 230 232 232 233 234 236 238 238 240 242 245 245 248 248 248 252 256 256 260 262 264 265 265 267 267 268 271 276 277 278 280 283
x PROBABILISTIC ROBOTICS 11.4.5 Recovering the Path and the Map 11.5 Data Association in the EIF 11.5.1 The EIF SLAM Algorithm With Unknown Correspon- dence 11.5.2 Mathematical Derivation 11.6 Efficiency Consideration 11.7 Empirical Implementation 11.8 Summary 12 THE SPARSE EXTENDED INFORMATION FILTER 12.1 Introduction 12.2 Intuitive Description 12.3 The SEIF SLAM Algorithm 12.4 Mathematical Derivation 12.4.1 Motion Update 12.4.2 Measurement Updates 12.5 Sparsification 12.5.1 General Idea 12.5.2 Sparsifications in SEIFs 12.5.3 Mathematical Derivation 12.6 Amortized Approximate Map Recovery 12.7 How Sparse Should SEIFs Be? 12.8 Incremental Data Association 12.8.1 Computing Data Association Probabilities 12.8.2 Practical Considerations 12.9 Tree-Based Data Association 12.9.1 Calculating Data Association Probaiblities 12.9.2 Tree Search 12.9.3 Equivalency Constraints 12.9.4 Practical Considerations 12.10 Multi-Vehicle SLAM 12.10.1Fusing Maps Acquired by Multiple Robots 12.10.2Establishing Correspondence 12.11 Discussion 285 286 287 290 292 294 300 303 303 305 308 312 312 316 316 316 318 319 320 323 328 328 330 335 336 339 340 341 344 344 347 349
分享到:
收藏