Microwave Radiometer Systems
Design and Analysis
Second Edition
Contents
Preface xi
1 Introduction 1
2 Summary 3
3 The Radiometer Receiver: Sensitivity and Accuracy 7
3.1 What Is a Radiometer Receiver? 7
3.2 The Sensitivity of the Radiometer 7
3.3 Absolute Accuracy and Stability 9
4 Radiometer Principles 13
4.1 The Total Power Radiometer (TPR) 13
4.2 The Dicke Radiometer (DR) 14
4.3 The Noise-Injection Radiometer (NIR) 16
4.4 The Correlation Radiometer (CORRAD) 18
4.5 Hybrid Radiometer 20
4.6 Other Radiometer Types 21
5 Radiometer Receivers on a Block Diagram Level 25
5.1 Receiver Principles 25
5.1.1 Direct or Superheterodyne 25
5.1.2 DSB or SSB with or without RF Preamplifier 26
5.2 Dicke Radiometer 27
5.2.1 Microwave Part 27
5.2.2 The Noise Figure and the Sensitivity of the Radiometer 29
5.2.3 The IF Circuitry and the Detector 30
5.2.4 The Extreme Signal Levels 32
5.2.5 The LF Circuitry 33
5.2.6 The Analog-to-Digital Converter 34
5.2.7 On the Sampling in the Radiometer: Aliasing 37
5.3 The Noise-Injection Radiometer 38
5.4 The Total Power Radiometer 40
5.4.1 DSB Receiver without RF Preamplifier 40
5.4.2 SSB Receiver with RF Preamplifier 42
5.5 Stability Considerations 43
6 The DTU Noise-Injection Radiometers Example 47
7 Polarimetric Radiometers 55
7.1 Polarimetry and Stokes Parameters 55
7.2 Radiometric Signatures of the Ocean 57
7.3 Four Configurations 57
7.3.1 Polarization Combining Radiometers 57
7.3.2 Correlation Radiometers 60
7.4 Sensitivities 62
7.5 Discussion of Configurations 64
7.6 The DTU Polarimetric System 64
8 Synthetic Aperture Radiometer Principles 69
8.1 Introduction 69
8.2 Practical Considerations 72
8.2.1 RF Processing 72
8.2.2 Basic Equation 73
8.2.3 Image Processing 74
8.2.4 Sensitivity 75
8.3 Example 76
9 Calibration and Linearity 81
9.1 Why Calibrate? 81
9.2 Calibration Sources 82
9.3 Example: Calibration of a 5-GHz Radiometer 86
9.4 Linearity Measured by Simple Means 87
9.4.1 Background 88
9.4.2 Simple Three-Point Calibration 89
9.4.3 Linearity Checked by Slope Measurements 92
9.4.4 Measurements 93
9.5 Calibration of Polarimetric Radiometers 96
10 Sensitivity and Stability: Experiments with Basic Radiometer Receivers 99
10.1 Background 99
10.2 The Radiometers Used in the Experiments 100
10.3 The Experimental Setup 101
10.4 5-GHz Sensitivity Measurements 102
10.5 Stability Measurements 103
10.5.1 Discussion of the 5-GHz DR Results 103
10.5.2 The 5-GHz DR with Correction Algorithm 105
10.5.3 The 17-GHz NIR Results 109
10.5.4 Discussion of the TPR Results 111
10.5.5 Back-End Stability 113
10.6 Conclusions 114
11 Radiometer Antennas and Real Aperture Imaging Considerations 117
11.1 Beam Efficiency and Losses 117
11.2 Antenna Types 119
11.3 Imaging Considerations 121
11.4 The Dwell Time Per Footprint Versus the Sampling Time in the Radiometer 125
11.5 Receiver Considerations for Imagers 130
12 Relationships Between Swath Width, Footprint, Integration Time, Sensitivity, Frequency, and Other Parameters for Satellite-Borne, Real Aperture Imaging Systems 133
12.1 Mechanical Scan 134
12.2 Push-Broom Systems 139
12.3 Summary and Discussion 140
12.4 Examples 143
12.4.1 General-Purpose Multifrequency Mission 143
12.4.2 Coastal Salinity Sensor 143
12.4.3 Realistic Salinity Sensor 144
13 First Example of a Spaceborne Imager: A General-Purpose Mechanical Scanner 147
13.1 Background 147
13.2 System Considerations 149
13.2.1 General Geometric and Radiometric Characteristics 149
13.2.2 Instrument Options 152
13.2.3 Baseline Instrument Specifications 156
13.2.4 Instrument Layout and Receiver Type 156
13.3 Receiver Design 157
13.3.1 The Direct Receivers (10.65–36.5 GHz) 157
13.3.2 The 89-GHz DSB Receivers 158
13.3.3 Integrated Receivers: Weight and Power 159
13.3.4 Performance of the Receivers 160
13.3.5 Critical Design Features 161
13.4 Antenna Design 163
13.5 Calibration and Linearity 165
13.5.1 Prelaunch Radiometric Calibration 165
13.5.2 On-Board Calibration 166
13.6 System Issues 167
13.6.1 System Weight and Power 167
13.6.2 Data Rate 168
13.7 Summary 169
14 Second Example of a Spaceborne Imager: A Sea Salinity/Soil Moisture Push-Broom Radiometer System 171
14.1 Background 171
14.2 The Brightness Temperature of the Sea 172
14.3 The Brightness Temperature of Moist Soil 175
14.4 User Requirements for Geophysical and Spatial Resolution 177
14.4.1 Salinity Measurements 177
14.4.2 Soil Moisture Measurements 177
14.5 A 1.4-GHz Push-Broom Radiometer System 177
14.5.1 Sensitivity Considerations 177
14.5.2 The 1.4-GHz Noise-Injection Radiometer Receiver 178
14.5.3 Antenna Considerations 181
14.5.4 Layout of the System 181
14.6 Calibration 184
14.7 A Disturbing Factor: The Faraday Rotation 186
14.7.1 The Faraday Rotation 186
14.7.2 Correction Based on Knowing the Rotation Angle 187
14.7.3 Correction Based on the Polarization Ratio 189
14.7.4 Consequences for Instrument Design 191
14.7.5 Circumventing the Problem by Using the First Stokes Parameter 191
14.8 Other Disturbing Factors: Space and Atmosphere 192
14.8.1 Space Radiation 192
14.8.2 Atmospheric Effects 193
14.9 Summary 193
15 Examples of Synthetic Aperture Radiometers 197
15.1 Introduction 197
15.2 Implementation of Synthesis 198
15.3 Airborne Example: ESTAR 200
15.3.1 Hardware 200
15.3.2 Image Reconstruction 204
15.3.3 Calibration 205
15.3.4 Discussion 207
15.3.5 Example of Imagery 208
15.4 Spaceborne Examples 211
15.4.1 HYDROSTAR 211
15.4.2 SMOS 214
Acronyms 219