logo资料库

Stability of Time-Delay Systems (Gu KeQin).pdf

第1页 / 共359页
第2页 / 共359页
第3页 / 共359页
第4页 / 共359页
第5页 / 共359页
第6页 / 共359页
第7页 / 共359页
第8页 / 共359页
资料共359页,剩余部分请下载后查看
This is page i Printer: Opaque this Stability of Time-Delay Systems Keqin Gu, Vladimir L. Kharitonov and Jie Chen
ii ABSTRACT abstract
Contents 1 Introduction to Time-Delay Systems 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 A simple time-delay system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Functional differential equations 1.4 Stability of time-delay systems . . . . . . . . . . . . . . . . 1.4.1 Stability concept . . . . . . . . . . . . . . . . . . . . 1.4.2 Lyapunov-Krasovskii theorem . . . . . . . . . . . . . 1.4.3 Razumikhin theorem . . . . . . . . . . . . . . . . . . 1.5 Linear systems . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Linear time-invariant systems . . . . . . . . . . . . . . . . . 1.7 Neutral time delay systems . . . . . . . . . . . . . . . . . . 1.8 Outline of the text . . . . . . . . . . . . . . . . . . . . . . . 1.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9.1 A brief historic note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9.2 Application examples 1.9.3 Analysis of time-delay systems . . . . . . . . . . . . 2 Systems with Commensurate Delays 2-D stability tests 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Some classical stability tests . . . . . . . . . . . . . . . . . . 2.2.1 . . . . . . . . . . . . . . . . . . . 2.2.2 Pseudo-delay methods . . . . . . . . . . . . . . . . . 2.2.3 Direct method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Frequency sweeping tests 2.4 Constant matrix tests 2.5 Notes 2.5.1 Classical results . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Frequency-sweeping and constant matrix tests 3 Systems with Incommensurate Delays 3.2.1 3.2.2 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Small gain/ theorem . . . . . . . . . . . . . . . . . . . . . Small gain theorem . . . . . . . . . . . . . . . . . . . Structured singular value . . . . . . . . . . . . . . . 3.3 Frequency-sweeping conditions . . . . . . . . . . . . . . . . 3.4 Computational complexity analysis . . . . . . . . . . . . . . 3.4.1 Basic complexity concepts . . . . . . . . . . . . . . . This is page iii Printer: Opaque this 1 1 5 8 10 10 11 14 16 17 20 21 25 25 26 27 31 31 34 34 36 38 44 55 67 67 68 69 69 70 70 76 79 87 87
iv 3.5.1 3.5.2 3.4.2 Proof of NP-hardness 3.5 Sufficient stability conditions 89 . . . . . . . . . . . . . . . . . 95 . . . . . . . . . . . . . . . . . Systems of one delay . . . . . . . . . . . . . . . . . . 96 Systems of multiple delays . . . . . . . . . . . . . . . 102 3.6 Neutral delay systems . . . . . . . . . . . . . . . . . . . . . 105 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Small gain theorem and . . . . . . . . . . . . . . . 114 Stability of systems with incommensurate delays . . 114 . . . . . . . . . . . . . . . . . . . 115 . . . . . . 115 3.7.1 3.7.2 3.7.3 Complexity issues 3.7.4 Sufficient conditions and neutral systems 4 Frequency domain robust stability analysis 117 . . . . . . . . . . . . . . . . . . . . . . . 117 4.1 Uncertain systems 4.2 Characteristic quasipolynomial . . . . . . . . . . . . . . . . 117 4.3 Zeros of a quasipolynomial . . . . . . . . . . . . . . . . . . . 119 4.3.1 Exponential diagram . . . . . . . . . . . . . . . . . . 120 4.3.2 Potential diagram . . . . . . . . . . . . . . . . . . . 122 4.4 Uncertain quasipolynomial . . . . . . . . . . . . . . . . . . . 125 4.4.1 Value set . . . . . . . . . . . . . . . . . . . . . . . . 126 4.4.2 Zero exclusion principle . . . . . . . . . . . . . . . . 126 4.5 Edge theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Stability of an edge subfamily . . . . . . . . . . . . . 132 Interval quasipolynomial . . . . . . . . . . . . . . . . 133 4.6 Multivariate polynomial approach . . . . . . . . . . . . . . . 135 . . . . . . . . . . . . . . . 136 Stable polynomials . . . . . . . . . . . . . . . . . . . 136 Stability of an interval multivariate polynomial . . . 139 Stability of a diamond family of multivariate polyno- mials . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . 143 4.6.1 Multivariate polynomials 4.6.2 4.6.3 4.6.4 4.5.1 4.5.2 5 Systems with Single Delay 145 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.1 5.2 Delay-independent stability criteria based on Razumikhin Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.2.1 Single delay case . . . . . . . . . . . . . . . . . . . . 148 5.2.2 Distributed delay case . . . . . . . . . . . . . . . . . 152 5.3 Simple delay-dependent stability criteria based on Razu- mikhin Theorem . . . . . . . . . . . . . . . . . . . . . . . . 154 5.3.1 Model transformation . . . . . . . . . . . . . . . . . 155 5.3.2 Simple delay-dependent stability using explicit model transformation . . . . . . . . . . . . . . . . . . . . . 156 5.3.3 Additional dynamics . . . . . . . . . . . . . . . . . . 158 5.3.4 Simple delay-dependent stability using implicit model transformation . . . . . . . . . . . . . . . . . . . . . 163
v 5.4 Delay-independent stability based on Lyapunov-Krasovskii stability theorem . . . . . . . . . . . . . . . . . . . . . . . . 166 Systems with single delay . . . . . . . . . . . . . . . 166 5.4.1 5.4.2 Systems with distributed delays . . . . . . . . . . . . 168 5.5 Delay-dependent stability criteria using simple Lyapunov- 5.6 Complete quadratic Lyapunov-Krasovskii functional Krasovskii functional . . . . . . . . . . . . . . . . . . . . . . 170 Stability criteria using explicit model transformation 170 5.5.1 Stability criteria using implicit model transformation 171 5.5.2 . . . . 173 Introduction . . . . . . . . . . . . . . . . . . . . . . 173 5.6.1 . . . . . . 175 5.6.2 Fundamental solution and matrix UW (τ ) 5.6.3 Lyapunov-Krasovskii functionals . . . . . . . . . . . 177 5.7 Discretized Lyapunov functional method for systems with single delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 179 5.7.2 Discretization . . . . . . . . . . . . . . . . . . . . . . 181 5.7.3 Lyapunov-Krasovskii functional condition . . . . . . 182 5.7.4 Lyapunov-Krasovskii derivative condition . . . . . . 186 5.7.5 Stability criterion and examples . . . . . . . . . . . . 189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.8 Notes 5.8.1 Results based on Razumikhin Theorem . . . . . . . 191 5.8.2 Model transformation and additional dynamics . . . 191 5.8.3 Lyapunov-Krasovskii method . . . . . . . . . . . . . 192 6 Robust Stability Analysis 193 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.2 Uncertainty characterization . . . . . . . . . . . . . . . . . . 193 6.2.1 Polytopic uncertainty . . . . . . . . . . . . . . . . . 194 6.2.2 Subpolytopic uncertainty . . . . . . . . . . . . . . . 195 6.2.3 Norm bounded uncertainty . . . . . . . . . . . . . . 197 6.2.4 Block-diagonal uncertainty . . . . . . . . . . . . . . 201 6.3 Robust stability based on Razumikhin Theorem . . . . . . . 203 6.3.1 Delay-independent stability for systems with single delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.3.2 Delay independent stability for systems with distrib- uted delays . . . . . . . . . . . . . . . . . . . . . . . 204 6.3.3 Delay-dependent stability with explicit model trans- formation . . . . . . . . . . . . . . . . . . . . . . . . 207 6.4 Delay independent stability using Lyapunov-Krasovskii func- tional 6.4.1 6.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Systems with single delay . . . . . . . . . . . . . . . 209 Systems with distributed delays . . . . . . . . . . . . 214 6.5 Delay-dependent stability using simple Lyapunov-Krasovskii functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.6 Complete quadratic Lyapunov-Krasovskii functional approach220
vi 6.7 Discretized Lyapunov functional method for systems with 6.8 Notes single delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 6.7.1 General case . . . . . . . . . . . . . . . . . . . . . . 223 6.7.2 Norm bounded uncertainty . . . . . . . . . . . . . . 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6.8.1 Uncertainty characterization . . . . . . . . . . . . . 227 6.8.2 Stability results based on Razumikhin Theorem and Lyapunov-Krasovskii functional . . . . . . . . . . . . 228 7 Systems with Multiple and distributed delays 229 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 7.2 Delay-independent stability of systems with multiple delays 230 7.3 Simple delay-dependent stability of systems with multiple delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.4 Complete quadratic functional for general linear systems . . 234 7.5 Discretized Lyapunov functional method for systems with multiple delays . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.5.1 Problem setup . . . . . . . . . . . . . . . . . . . . . 238 7.5.2 Discretization . . . . . . . . . . . . . . . . . . . . . . 240 7.5.3 Lyapunov-Krasovskii functional condition . . . . . . 242 7.5.4 Lyapunov-Krasovskii derivative condition . . . . . . 248 7.5.5 Stability condition and examples . . . . . . . . . . . 255 7.6 Discretized Lyapunov functional method for systems with distributed delays . . . . . . . . . . . . . . . . . . . . . . . . 257 7.6.1 Problem statement . . . . . . . . . . . . . . . . . . . 257 7.6.2 Discretization . . . . . . . . . . . . . . . . . . . . . . 259 7.6.3 Lyapunov-Krasovskii functional condition . . . . . . 260 7.6.4 Lyapunov-Krasovskii derivative condition . . . . . . 262 Stability criterion and examples . . . . . . . . . . . . 266 7.6.5 7.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 8 Stability under dynamic uncertainty 8.1 8.2 8.3 Method of comparison systems 269 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Input-output stability . . . . . . . . . . . . . . . . . . . . . 270 . . . . . . . . . . . . . . . . 273 8.3.1 Frequency domain approach . . . . . . . . . . . . . . 273 8.3.2 Time domain approach . . . . . . . . . . . . . . . . 277 8.4 Scaled small gain problem . . . . . . . . . . . . . . . . . . . 279 8.5 Robust stability under dynamic uncertainty . . . . . . . . . 284 8.5.1 Problem setup . . . . . . . . . . . . . . . . . . . . . 284 8.5.2 Uncertainty characterization . . . . . . . . . . . . . 285 8.5.3 Robust small gain problem . . . . . . . . . . . . . . 287 8.6 Approximation approach . . . . . . . . . . . . . . . . . . . . 288 8.6.1 Approximation of time-varying delay . . . . . . . . . 288 8.6.2 Approximation of distributed delay coefficient matrix 291
vii 8.6.3 Approximation by multiple delays . . . . . . . . . . 296 8.7 Passivity and generalization . . . . . . . . . . . . . . . . . . 299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 8.8 Notes A Matrix facts 303 A.1 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 A.2 Eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . 304 A.3 Singular value decomposition . . . . . . . . . . . . . . . . . 306 A.4 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 A.5 Kronecker product and sum . . . . . . . . . . . . . . . . . . 308 A.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 B LMI & Quadratic Integral Inequalities 309 B.1 Basic LMI problem . . . . . . . . . . . . . . . . . . . . . . . 309 B.2 Generalized Eigenvalue Problem (GEVP) . . . . . . . . . . 310 B.3 Transforming nonlinear matrix inequalities to LMI form . . 312 B.4 S-procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 B.5 Elimination of matrix variables . . . . . . . . . . . . . . . . 313 B.6 Quadratic Integral Inequalities . . . . . . . . . . . . . . . . 316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 B.7 Notes Bibliography 319 B.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
viii
分享到:
收藏