logo资料库

Nastran Linear Static Analysis.pdf

第1页 / 共735页
第2页 / 共735页
第3页 / 共735页
第4页 / 共735页
第5页 / 共735页
第6页 / 共735页
第7页 / 共735页
第8页 / 共735页
资料共735页,剩余部分请下载后查看
Return to MSC.Nastran Directory
Preface
About This Book
List of MSC.Nastran Books
Technical Support
Internet Resources
Permission to Copy and Distribute MSC Documentation
Introduction
1.1 Introduction
1.2 Scope
1.3 Using the Finite Element Method
1.4 A Simple Problem
Organization of MSC.Nastran Files
2.1 Introduction to Organization of MSC.Nastran Files
2.2 Overview of the MSC.Nastran Input Files
The NASTRAN Statement
File Management Section
Executive Control Section
Case Control Section
Bulk Data Section
2.3 Overview of the MSC.Nastran Output Files
2.4 The Executive Control Section
2.5 The Case Control Section
2.6 The Bulk Data Section
Grid Points, Scalar Points, and Coordinate Systems
3.1 Introduction to Degrees of Freedom
3.2 Grid Points
3.3 Scalar Points
3.4 Coordinate Systems
User-Defined Coordinate Systems
CORD1R and CORD2R Bulk Data Entries
CORD1C and CORD2C Bulk Data Entries
CORD1S and CORD2S Bulk Data Entries
The Element and Material Coordinate System
MSC.Nastran Elements
4.1 Introduction to MSC.Nastran Elements
Scalar Elements
One-Dimensional Elements
Two-Dimensional Elements
Three-Dimensional Elements
4.2 Scalar Elements
4.3 One-Dimensional Elements
The CROD Element
The CBAR Element
PBARL -- An Alternate and Convenient Method for Defining Bar Cross Sections
The CBEAM Element
PBEAML-- An Alternate and Convenient Method for Defining CBEAM Cross Sections
The CBEND Element
4.4 Two-Dimensional Elements
The CQUAD4 and CTRIA3 Elements
The CQUAD8 and CTRIA6 Elements
Shell Element Force, Stress, and Strain Output in the Material Coordinate System
Input
Output
Guidelines and Limitations
The CQUADR and CTRIAR Elements
The Shear Panel Element (CSHEAR)
Two-Dimensional Crack Tip Element (CRAC2D)
4.5 Three-Dimensional Elements
The CHEXA, CPENTA, and CTETRA Elements
The CTRIAX6 Element
Three-Dimensional Crack Tip Element (CRAC3D)
4.6 CBUSH Elements
4.7 The GENEL Element
4.8 CWELD Connector Element
Introduction
Connectivity Definition
Property Definition
Finite Element Representation of the Connector
Results Output
Example (CWELD101a-b.DAT)
Guidelines and Remarks
Material Properties and Composites
5.1 Introduction to Material Properties
5.2 Isotropic Material (MAT1)
5.3 Two-Dimensional Anisotropic Material (MAT2)
5.4 Axisymmetric Solid Orthotropic Material (MAT3)
5.5 Two-Dimensional Orthotropic Material (MAT8)
5.6 Three-Dimensional Anisotropic Material (MAT9)
Part 1 -- Develop the Material Matrix
Part 2 -- Verify the Material Matrix
Part 3 - Use the Anisotropic Material in the Actual Structure
5.7 The PSHELL Entry
5.8 The Composite Element (PCOMP)
5.9 Equivalent Composite Honeycomb Section
Static Loads
6.1 Introduction to Static Loads
6.2 Loads on Grid Points and Scalar Points
6.3 Distributed Loads on Line Elements
6.4 Distributed Loads on Surfaces
6.5 Gravity and Centrifugal Force (GRAV, RFORCE)
Defining Mass in Your Model
6.6 Initial Strains (DEFORM)
6.7 Load Combinations
6.8 Thermal Loads
Using the SUBCOM with Thermal Loads
Constraints
7.1 Introduction to Constraints
7.2 Single-Point Constraints
7.3 Automatic Application of Single-Point Constraints (AUTOSPC)
7.4 Enforced Displacements at Grid Points (SPCD, SPC)
7.5 Multipoint Constraints
7.6 Contact Problem Using Linear Static Analysis
Introduction
Input
Output
Limitations
Examples
R-Type Elements
8.1 Introduction to R-Type Elements
8.2 Description of the R-Type Elements
8.3 The RBAR Element
8.4 The RBE2 Element
8.5 The RBE3 Element
Modeling Guidelines
9.1 Introduction to Modeling Guidelines
9.2 Choosing the Right Element
General Guidelines
Zero-Dimensional Elements
One-Dimensional Elements
Two-Dimensional Elements
Shell Normals
Remarks and Recommendations
Three-Dimensional Elements
R-Type Elements
9.3 Mesh Density
9.4 Mesh Transitions
Transition from a Coarse Mesh to a Fine Mesh
Mesh Transition Between Dissimilar Element Types
Shell-to-Solid Transition Element (RSSCON)
RSSCON Modeling Recommendations
9.5 Grid Point Stresses
Description of the Grid Point Stress Method
Topological Method - Plate Elements and Solid Elements
Treatment of Exception Points
Grid Point Stress User Interface
9.6 Consistent Loading
9.7 Symmetry
User Interface
Model Verification
10.1 Introduction to Model Verification
10.2 Preprocessor Checks
Shrink Plot
Hidden Line/Shaded Plots
Free Edge/Face
Zipper Effect
CBAR/CBEAM Orientation and Offset Check
Duplicate Grid Points/Elements
Properties/Material Plots
Consistent Plate Normals
10.3 Strain Energy Output
10.4 Diagnostic Tools
Element Summary Output
Element Geometry Checks
Overview
GEOMCHECK Statement
Geometry Test Descriptions
BAR and BEAM
CQUAD4 and CQUADR
CTRIA3 and CTRIAR
CHEXA, CPENTA and CTETRA
User Interface:
Examples:
Sample Output:
Weight Center of Gravity and Moment of Inertia Check
Mechanisms and Singularities
Applied Loads Check
Reaction Load
1g Load
Output of Maximum, Minimum Grid Point-Based Responses
Overview
MAXMIN Sample Output
Unconstrained Equilibrium Check
Automatic Identification of Unintentional Grounding
Thermal Equilibrium Check
Grid Point Force Balance
10.5 Stress Error Estimators
Grid Point Stress Discontinuities
NORMAL-X Stress
Element Stress Discontinuities
NORMAL-X Stress
Discussion of Error Measures
User Interface
10.6 Postprocessor Checks
Displacement
Stress Contours
Grid Point Stress and Stress Discontinuity Plots
Element Strain Energy Plots
Summary
Inertia Relief
11.1 Introduction to Inertia Relief
11.2 Description of Inertia Relief Using PARAM,INREL,-1
11.3 Implementation of Inertia Relief in MSC.Nastran Using PARAM,INREL,-1
11.4 Automatic Inertia Relief
Limitations for the Automatic Inertia Relief Method
Matrix Operations
12.1 Introduction to Matrix Operations
12.2 Set Definition
The Global Displacement Set
Subsets of the Global Displacement Set
12.3 Static Condensation (Guyan Reduction)
User Interface
12.4 Direct Matrix Input
DMIG
DMIG Bulk Data User Interface
DMIG Case Control User Interface
DMIG Examples
Stiffness Matrix Using DMIG
Mass Matrix Using DMIG
Load Matrix Using DMIG
Linear Buckling
13.1 Introduction to Linear Buckling
13.2 Finite Element Approach
13.3 Eigenvalue Extraction Method
Inverse Power Method (INV)
Enhanced Inverse Power Method (SINV)
Lanczos Method
Comparison of Methods
User Interface
13.4 Assumptions and Limitations of Linear Buckling Analysis
13.5 Examples
Example 1 -- Classical Euler Beam Buckling
MSC.Nastran Results for Example 1
Theoretical Results for Example 1
Example 2 -- Lateral Buckling
MSC.Nastran Results for Example 2
Theoretical Results for Example 2
Example 3 -- Planar Frame Buckling
MSC.Nastran Results for Example 3
Theoretical Results for Example 3
Example 4 -- Buckling of a Stiffened Panel with Transverse Shear Flexibility
MSC.Nastran Results for Example 4
Theoretical Results for Example 4
Example 5 -- Buckling of a Cylinder Under Uniform Axial Load
MSC.Nastran Results for Example 5
Theoretical Results for Example 5
Example 6 -- Multiple Buckling Analyses in a Single Run
Restarts
14.1 Introduction to Restarts
14.2 Types of Restarts
14.3 Structure of the MSC.Nastran Input File
14.4 User Interface for Read-Write Restart
Cold Start Run
Restart Run
NASTRAN Statement Section
14.5 Determining the Version for a Restart
14.6 Read-Only Restarts
14.7 Mini-Database Restarts
14.8 Miscellaneous Applications
Bulk Data Listing
Summary
Database Management
15.1 Introduction to Database Management
15.2 Definitions
15.3 MSC.Nastran Database
15.4 File Management Section
INIT
Purpose
Format (Simplified) for All DBsets Except SCRATCH DBsets
Example A
Format (Simplified) for the SCRATCH DBset
Example B
ASSIGN
Purpose
Format (Simplified) to Assign Logical Files
Example C
Format (Simplified) to Assign FORTRAN Files
Example D
EXPAND
Purpose
Format
Example E
RESTART
Purpose
Format
Example F
DBCLEAN
Purpose
Format
Example G
DBDIR
Purpose
Format
Example H
INCLUDE
Purpose
Format
15.5 Guidelines for Large Problems
Example I
Example J
Example K
Example L
BUFFSIZE
Example M
Summary
Cyclic Symmetry
16.1 Introduction to Cyclic Symmetry
16.2 Description of Geometric Symmetry in MSC.Nastran
16.3 Mathematical Description of Structural Symmetry
Reflective Symmetry
Axisymmetry
Rotational Symmetry
Dihedral Symmetry
16.4 Bulk Data Entries for Cyclic Symmetry
LOADCYN, LOADCYH, and LOADCYT Bulk Data Entries
16.5 Case Control Section for Cyclic Symmetry
16.6 Axisymmetric Example
Glossary of Terms
Grid Point Weight Generator
2.1 Introduction to Grid Point Weight Generation
2.2 Commonly Used Features
2.3 Example with Direction-Dependent Masses
Summary of Basic Case Control Commands
Summary of Basic Bulk Data Entries
Output Listing
5.1 Examples List
Parameters
Resource Estimation
Generating the Cylinder in MSC.Patran
8.1 Procedures
Opening a New Database
Using the Viewing/Angles Option
Create Named Views
Applying Named Views
Create a Point and a Coordinate System
Create Point Translate Option
Create Curve Revolve Option
Create Surface Extrude Option
Create Surface Rotate Option
Changing the Graphics Preferences
Create Mesh Seed
Create Mesh Using QUAD4 Elements
Equivalence Method
Using the View/Named View Options
Create a Node
Create and Post a New Group
Create an RBE3 Element
Create Element Properties
Create Two Displacement Constraints
Create Applied Force
Create a New Group
Plotting the Load/BCs Markers
MSC.Nastran 2003 Linear Static Analysis User’s Guide
Corporate MSC.Software Corporation 2 MacArthur Place Santa Ana, CA 92707 USA Telephone: (800) 345-2078 Fax: (714) 784-4056 Europe MSC.Software GmbH Am Moosfeld 13 81829 Munich, Germany Telephone: (49) (89) 43 19 87 0 Fax: (49) (89) 43 61 71 6 Asia Pacific MSC.Software Japan Ltd. Shinjuku First West 8F 23-7 Nishi Shinjuku 1-Chome, Shinjyku-Ku, Tokyo 160-0023, Japan Telephone: (81) (03) 6911 1200 Fax: (81) (03) 6911 1201 Worldwide Web www.mscsoftware.com Disclaimer This documentation, as well as the software described in it, is furnished under license and may be used only in accordance with the terms of such license. MSC.Software Corporation reserves the right to make changes in specifications and other information contained in this document without prior notice. The concepts, methods, and examples presented in this text are for illustrative and educational purposes only, and are not intended to be exhaustive or to apply to any particular engineering problem or design. MSC.Software Corporation assumes no liability or responsibility to any person or company for direct or indirect damages resulting from the use of any information contained herein. User Documentation: Copyright  2004 MSC.Software Corporation. Printed in U.S.A. All Rights Reserved. This notice shall be marked on any reproduction of this documentation, in whole or in part. Any reproduction or distribution of this document, in whole or in part, without the prior written consent of MSC.Software Corporation is prohibited. The software described herein may contain certain third-party software that is protected by copyright and licensed from MSC.Software suppliers. MSC, MSC/, MSC., MSC.Dytran, MSC.Fatigue, MSC.Marc, MSC.Patran, MSC.Patran Analysis Manager, MSC.Patran CATXPRES, MSC.Patran FEA, MSC.Patran Laminate Modeler, MSC.Patran Materials, MSC.Patran Thermal, MSC.Patran Queue Manager and PATRAN are trademarks or registered trademarks of MSC.Software Corporation in the United States and/or other countries. NASTRAN is a registered trademark of NASA. PAM-CRASH is a trademark or registered trademark of ESI Group. SAMCEF is a trademark or registered trademark of Samtech SA. LS-DYNA is a trademark or registered trademark of Livermore Software Technology Corporation. ANSYS is a registered trademark of SAS IP, Inc., a wholly owned subsidiary of ANSYS Inc. ABAQUS is a registered trademark of ABAQUS Inc. ACIS is a registered trademark of Spatial Technology, Inc. CATIA is a registered trademark of Dassault Systemes, SA. EUCLID is a registered trademark of Matra Datavision Corporation. FLEXlm is a registered trademark of GLOBEtrotter Software, Inc. HPGL is a trademark of Hewlett Packard. PostScript is a registered trademark of Adobe Systems, Inc. PTC, CADDS and Pro/ENGINEER are trademarks or registered trademarks of Parametric Technology Corporation or its subsidiaries in the United States and/or other countries.Unigraphics, Parasolid and I-DEAS are registered trademarks of Electronic Data Systems Corporation or its subsidiaries in the United States and/or other countries. All other brand names, product names or trademarks belong to their respective owners.
C O N T E N T S MSC.Nastran Linear Static Analysis User’s Guide MSC.Nastran Linear Static Analy- sis User’s Guide Preface 1 Introduction 2 Organization of MSC.Nastran Files I About This Book, xii I List of MSC.Nastran Books, xiii I Technical Support, xiv I Internet Resources, xvii I Permission to Copy and Distribute MSC Documentation, xix I Introduction, 2 I Scope, 3 I Using the Finite Element Method, 4 I A Simple Problem, 11 I Introduction to Organization of MSC.Nastran Files, 20 I Overview of the MSC.Nastran Input Files, 21 ❑ The NASTRAN Statement, 23 ❑ File Management Section, 23 ❑ Executive Control Section, 23 ❑ Case Control Section, 23 ❑ Bulk Data Section, 24 I Overview of the MSC.Nastran Output Files, 27 I The Executive Control Section, 32 I The Case Control Section, 34 I The Bulk Data Section, 41 3 Grid Points, Scalar Points, and Coordinate Systems I Introduction to Degrees of Freedom, 48 I Grid Points, 49 I Scalar Points, 51 I Coordinate Systems, 52 ❑ User-Defined Coordinate Systems, 54
❑ CORD1R and CORD2R Bulk Data Entries, 54 ❑ CORD1C and CORD2C Bulk Data Entries, 58 ❑ CORD1S and CORD2S Bulk Data Entries, 59 ❑ The Element and Material Coordinate System, 62 4 MSC.Nastran Elements I Introduction to MSC.Nastran Elements, 66 ❑ Scalar Elements, 66 ❑ One-Dimensional Elements, 66 ❑ Two-Dimensional Elements, 67 ❑ Three-Dimensional Elements, 68 I Scalar Elements, 69 I One-Dimensional Elements, 73 ❑ The CROD Element, 73 ❑ The CBAR Element, 77 ❑ PBARL -- An Alternate and Convenient Method for Defining Bar Cross Sections, 87 ❑ The CBEAM Element, 103 ❑ PBEAML-- An Alternate and Convenient Method for Defining CBEAM Cross Sections, 113 I Two-Dimensional Elements, 127 ❑ The CQUAD4 and CTRIA3 Elements, 127 ❑ The CQUAD8 and CTRIA6 Elements, 139 ❑ Shell Element Force, Stress, and Strain Output in the Material Coordinate System, 140 Input, 141 ❑ Output, 141 ❑ Guidelines and Limitations, 142 ❑ The CQUADR and CTRIAR Elements, 142 ❑ The Shear Panel Element (CSHEAR), 143 ❑ Two-Dimensional Crack Tip Element (CRAC2D), 145 I Three-Dimensional Elements, 148 ❑ The CHEXA, CPENTA, and CTETRA Elements, 148 ❑ The CTRIAX6 Element, 152 ❑ Three-Dimensional Crack Tip Element (CRAC3D), 153 I CBUSH Elements, 156 I The GENEL Element, 160 I CWELD Connector Element, 165 Introduction, 165 ❑ Connectivity Definition, 165 ❑ Property Definition, 168 ❑ Finite Element Representation of the Connector, 169 ❑ Results Output, 170 ❑ Example (CWELD101a-b.DAT), 171 ❑ Guidelines and Remarks, 174 ❑ ❑
5 Material Properties and Composites 6 Static Loads 7 Constraints I Introduction to Material Properties, 178 I Isotropic Material (MAT1), 179 I Two-Dimensional Anisotropic Material (MAT2), 181 I Axisymmetric Solid Orthotropic Material (MAT3), 182 I Two-Dimensional Orthotropic Material (MAT8), 183 I Three-Dimensional Anisotropic Material (MAT9), 187 ❑ Part 1 -- Develop the Material Matrix, 189 ❑ Part 2 -- Verify the Material Matrix, 190 ❑ Part 3 - Use the Anisotropic Material in the Actual Structure, 193 I The PSHELL Entry, 197 I The Composite Element (PCOMP), 199 I Equivalent Composite Honeycomb Section, 208 I Introduction to Static Loads, 218 I Loads on Grid Points and Scalar Points, 219 I Distributed Loads on Line Elements, 223 I Distributed Loads on Surfaces, 230 I Gravity and Centrifugal Force (GRAV, RFORCE), 234 ❑ Defining Mass in Your Model, 236 I Initial Strains (DEFORM), 241 I Load Combinations, 245 I Thermal Loads, 249 ❑ Using the SUBCOM with Thermal Loads, 249 I Introduction to Constraints, 259 I Single-Point Constraints, 260 I Automatic Application of Single-Point Constraints (AUTOSPC), 263 I Enforced Displacements at Grid Points (SPCD, SPC), 267 I Multipoint Constraints, 271 I Contact Problem Using Linear Static Analysis, 275 Introduction, 275 Input, 275 ❑ Output, 276 ❑ Limitations, 276 ❑ Examples, 277 ❑ ❑
8 R-Type Elements 9 Modeling Guidelines I Introduction to R-Type Elements, 286 I Description of the R-Type Elements, 287 I The RBAR Element, 290 I The RBE2 Element, 297 I The RBE3 Element, 301 I Introduction to Modeling Guidelines, 312 I Choosing the Right Element, 313 ❑ General Guidelines, 313 ❑ Zero-Dimensional Elements, 313 ❑ One-Dimensional Elements, 314 ❑ Two-Dimensional Elements, 314 ❑ Shell Normals, 316 ❑ Remarks and Recommendations, 318 ❑ Three-Dimensional Elements, 318 ❑ R-Type Elements, 319 I Mesh Density, 320 I Mesh Transitions, 327 10 Model Verification ❑ Transition from a Coarse Mesh to a Fine Mesh, 327 ❑ Mesh Transition Between Dissimilar Element Types, 336 ❑ Shell-to-Solid Transition Element (RSSCON), 338 I Grid Point Stresses, 349 ❑ Description of the Grid Point Stress Method, 351 ❑ Topological Method - Plate Elements and Solid Elements, 352 ❑ Treatment of Exception Points, 356 ❑ Grid Point Stress User Interface, 357 I Consistent Loading, 360 I Symmetry, 363 ❑ User Interface, 365 I Introduction to Model Verification, 370 I Preprocessor Checks, 371 ❑ Shrink Plot, 371 ❑ Hidden Line/Shaded Plots, 372 ❑ Free Edge/Face, 373 ❑ Zipper Effect, 374 ❑ CBAR/CBEAM Orientation and Offset Check, 375 ❑ Duplicate Grid Points/Elements, 375 ❑ Properties/Material Plots, 375 ❑ Consistent Plate Normals, 375 I Strain Energy Output, 379
I Diagnostic Tools, 386 ❑ Element Summary Output, 387 ❑ Element Geometry Checks, 387 ❑ Weight Center of Gravity and Moment of Inertia Check, 395 ❑ Mechanisms and Singularities, 397 ❑ Applied Loads Check, 400 ❑ Reaction Load, 402 ❑ 1g Load, 403 ❑ Output of Maximum, Minimum Grid Point-Based Responses, 403 ❑ Unconstrained Equilibrium Check, 409 ❑ Automatic Identification of Unintentional Grounding, 410 ❑ Thermal Equilibrium Check, 412 ❑ Grid Point Force Balance, 412 I Stress Error Estimators, 418 ❑ Grid Point Stress Discontinuities, 419 ❑ Element Stress Discontinuities, 423 ❑ Discussion of Error Measures, 425 ❑ User Interface, 426 I Postprocessor Checks, 428 ❑ Summary, 433 I Introduction to Inertia Relief, 436 I Description of Inertia Relief Using PARAM,INREL,-1, 437 I Implementation of Inertia Relief in MSC.Nastran Using PARAM,INREL,-1, 438 I Automatic Inertia Relief, 451 ❑ Limitations for the Automatic Inertia Relief Method, 452 I Introduction to Matrix Operations, 456 I Set Definition, 457 ❑ The Global Displacement Set, 457 ❑ Subsets of the Global Displacement Set, 457 I Static Condensation (Guyan Reduction), 462 ❑ User Interface, 463 I Direct Matrix Input, 471 ❑ DMIG, 472 ❑ DMIG Bulk Data User Interface, 472 ❑ DMIG Case Control User Interface, 474 ❑ Stiffness Matrix Using DMIG, 475 ❑ Mass Matrix Using DMIG, 481 ❑ Load Matrix Using DMIG, 481 11 Inertia Relief 12 Matrix Operations 13 Linear Buckling I Introduction to Linear Buckling, 486
I Finite Element Approach, 487 I Eigenvalue Extraction Method, 493 Inverse Power Method (INV), 493 ❑ Enhanced Inverse Power Method (SINV), 493 ❑ Lanczos Method, 494 ❑ Comparison of Methods, 494 ❑ User Interface, 494 I Assumptions and Limitations of Linear Buckling Analysis, 497 I Examples, 498 ❑ Example 1 -- Classical Euler Beam Buckling, 498 ❑ MSC.Nastran Results for Example 1, 499 ❑ Theoretical Results for Example 1, 502 ❑ Example 2 -- Lateral Buckling, 503 ❑ MSC.Nastran Results for Example 2, 503 ❑ Theoretical Results for Example 2, 507 ❑ Example 3 -- Planar Frame Buckling, 508 ❑ MSC.Nastran Results for Example 3, 509 ❑ Theoretical Results for Example 3, 510 ❑ Example 4 -- Buckling of a Stiffened Panel with Transverse Shear Flexibility, 510 ❑ MSC.Nastran Results for Example 4, 511 ❑ Theoretical Results for Example 4, 513 ❑ Example 5 -- Buckling of a Cylinder Under Uniform Axial Load, 514 ❑ MSC.Nastran Results for Example 5, 515 ❑ Theoretical Results for Example 5, 517 ❑ Example 6 -- Multiple Buckling Analyses in a Single Run, 518 14 Restarts 15 Database Management I Introduction to Restarts, 522 I Types of Restarts, 523 I Structure of the MSC.Nastran Input File, 524 I User Interface for Read-Write Restart, 525 ❑ Cold Start Run, 525 ❑ Restart Run, 525 I Determining the Version for a Restart, 535 I Read-Only Restarts, 537 I Mini-Database Restarts, 538 I Miscellaneous Applications, 539 ❑ Bulk Data Listing, 539 ❑ Summary, 539 I Introduction to Database Management, 542 I Definitions, 543 I MSC.Nastran Database, 544 ❑
分享到:
收藏