课后答案网,用心为你服务! 大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网(www.khdaw.com)! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园(www.aixiaoyuan.com) 课后答案网(www.khdaw.com) 淘答案(www.taodaan.com)
A ∪ (B ∩ C) ⊂ (A ∪ B) ∩ (A ∪ C).
VW SR
1.?\ A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
XU x ∈ (A ∪ (B ∪ C)). x ∈ A,9 x ∈ A ∪ B, x ∈ A ∪ C, x ∈ (A ∪ B) ∩ (A ∪ C).
x ∈ B ∩ C,9!0 x ∈ A ∪ Bd x ∈ A ∪ C, x ∈ (A ∪ B) ∩ (A ∪ C),
V [ x ∈ (A ∪ B) ∩ (A ∪ C). x ∈ A,0 x ∈ A ∪ (B ∩ C). x 6∈ A,/
x ∈ A ∪ Bd x ∈ A ∪ C, x ∈ Bd x ∈ C, x ∈ B ∩ C,!0 x ∈ A ∪ (B ∩ C),
(A ∪ B) ∩ (A ∪ C) ⊂ A ∪ (B ∩ C). A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
2.?\
XU (1)A − (A ∩ B) = A ∩ ∁s(A ∩ B) = A ∩ (∁sA ∪ ∁sB) = (A ∩ ∁sA) ∪ (A ∩ ∁sB) = A − B;
3.?\ (A ∪ B) − C = (A − C) ∪ (B − C); A − (B ∪ C) = (A − B) ∩ (A − C).
XU (A ∪ B) − C = (A ∪ B) ∩ ∁sC = (A ∩ ∁sC) ∪ (B ∩ ∁sC) = (A − C) ∪ (B − C);
4.?\ ∁s(
Ai, i,x 6∈ Ai, x ∈ ∁sAi,
XU x ∈ ∁s(
(1)A − B = A − (A ∩ B) = (A ∪ B) − B;
(2)A ∩ (B − C) = (A ∩ B) − (A ∩ C);
(3)(A − B) − C = A − (B ∪ C);
(4)A − (B − C) = (A − B) ∪ (A ∩ C);
(5)(A − B) ∩ (C − D) = (A ∩ C) − (B ∪ D);
(6)A − (A − B) = A ∩ B.
(5)(A − B) ∩ (C − D) = (A ∩ ∁sB) ∩ (C ∩ ∁sD) = (A ∩ C) ∩ ∁s(B ∪ D) = (A ∩ C) − (B ∪ D);
(6)A − (A − B) = A ∩ ∁s(A ∩ ∁sB) = A ∩ (∁sA ∪ B) = A ∩ B.
(A ∪ B) − B = (A ∪ B) ∩ ∁sB = (A ∩ ∁sB) ∪ (B ∩ ∁sB) = A − B;
(2)(A ∩ B) − (A ∩ C) = (A ∩ B) ∩ ∁s(A ∩ C) = (A ∩ B) ∩ (∁sA ∪ ∁sC) = (A ∩ B ∩ ∁sA) ∪ (A ∩
(3)(A − B) − C = (A ∩ ∁sB) ∩ ∁sC = A ∩ ∁s(B ∪ C) = A − (B ∪ C);
(4)A− (B − C) = A− (B ∩ ∁sC) = A∩ ∁s(B ∩ ∁sC) = A∩ (∁sB ∪ C) = (A∩ ∁sB)∪ (A∩ C) =
Ai),9 x ∈ S, x 6∈
∞Ti=1
∁sAi.
(A − B) ∩ (A − C) = (A ∩ ∁sB) ∩ (A ∩ ∁sC) = A ∩ ∁sB ∩ ∁sC = A ∩ ∁s(B ∪ C) = A− (B ∪ C).
B ∩ ∁sC) = A ∩ (B ∩ ∁sC) = A ∩ (B − C);
(A − B) ∪ (A ∩ C);
Ai) =
∞Si=1
∞Si=1
∞Si=1
1
∞Si=1
nSi=1
(Aα − B).
{Bn}
(Aα − B);
(Aα − B).
{An}
Aν =
(1 ≤ i ≤ n).
Ai,
∞Si=1
x ∈
∞Ti=1
(2) Tα∈Λ
Bν, 1 ≤ n ≤ ∞.
Bi ∩ Bj ⊂ Ai ∩ (Aj −
nSν=1
j−1[n=1
∁sAi.
Ai) =
(Aα − B);
∞Si=1
∞Ti=1
Aα) − B = Sα∈Λ
Aα) ∩ ∁sB = Sα∈Λ
Aα) ∩ ∁sB = Tα∈Λ
Aα) − B = Tα∈Λ
An) = Ai ∩ Aj ∩ ∁sA1 ∩ ∁sA2 ∩ ··· ∩ ∁sAi ∩ ··· ∩ ∁sAj−1 = ∅.
(2)( Tα∈Λ
(Aα ∩ ∁sB) = Sα∈Λ
(Aα ∩ ∁sB) = Tα∈Λ
n−1Sν=1
∞Ti=1
( Sα∈Λ
Aα − B = ( Sα∈Λ
Aα − B = ( Tα∈Λ
∁sAi. x ∈
∁sAi,9 i,x ∈ ∁sAi, x ∈ S,x 6∈ Ai, x ∈ S, x 6∈
x ∈ ∁s(
Ai). ∁s(
5.?\ (1)
XU (1) Sα∈Λ
Aν ), n > 1.?\
6.
} U>8 B1 = A1, Bn = An − (
} U:
G> d nSν=1
XU i 6= j,. i < j. Bi ⊂ Ai
/ Bi ⊂ Ai(1 6= i 6= n) nSi=1
Bi. x 6∈ A1,W in}y x ∈ Ain ,
x ∈
Ai, x ∈ A1,9 x ∈ B1 ⊂
Bi. nSi=1
Ai x ∈ Ain .U
>7>
T lim
x ∈ (0,∞),98 N ,y x < N , n > Nw 0 < x < n, x ∈ A2n, x 2
N
_D> x 2 An, x ∈ lim
An,1 lim
lim
An = ∅,98 N ,y n > N ,0 x ∈ An. 2n − 1 > Nw
0 x ∈ lim
x ∈ A2n−1, 0 < x < 1
n .W n → ∞
0 < x ≤ 0,^ lim
8.?\ lim
An,98 N ,y
n > N ,x ∈ An, x ∈
XU x ∈ lim
Am, m ≥ n,0
lim
Am,90 n,y x ∈
Am. x ∈
x ∈ An, x ∈ lim
lim
An = (0,∞).
An = ∅;
nSi=1
in−1Si=1
∞Sn=1
∞Tm=n
n→∞
An ⊂ (0,∞),
∞Sn=1
∞Tm=n
n→∞
An = (0,∞);
x 6∈
in−1Si=1
∞Tm=n+1
An = ∅.
n→∞
Bi ⊂
Ai.
n→∞
∞Sn=1
n→∞
Ai = Bin ⊂
An =
Am.
n→∞
Am ⊂
Am,
Ai =
Bi.
nSi=1
An ⊂
n→∞
nSi=1
{An}
n→∞
lim
n→∞
n→∞
∞Tm=n
∞Sn=1
∞Tm=n
∞Sn=1
An.
∞Tm=n
An =
Am.
n→∞
nSi=1
n→∞
∞Tm=n
2
,
1 − z
2 )2 = ( 1
y
1 − z ∈ M.
ϕ(x, y, z) = x
9. 0 (−1, 1)7 (−∞, +∞) <