logo资料库

Modern Robotics Mechanics--Planning and Control 平板电脑版本.pdf

第1页 / 共642页
第2页 / 共642页
第3页 / 共642页
第4页 / 共642页
第5页 / 共642页
第6页 / 共642页
第7页 / 共642页
第8页 / 共642页
资料共642页,剩余部分请下载后查看
Foreword by Roger Brockett
Foreword by Matthew Mason
Preface
Preview
Configuration Space
Degrees of Freedom of a Rigid Body
Degrees of Freedom of a Robot
Robot Joints
Grübler's Formula
Configuration Space: Topology and Representation
Configuration Space Topology
Configuration Space Representation
Configuration and Velocity Constraints
Task Space and Workspace
Summary
Notes and References
Exercises
Rigid-Body Motions
Rigid-Body Motions in the Plane
Rotations and Angular Velocities
Rotation Matrices
Angular Velocities
Exponential Coordinate Representation of Rotation
Rigid-Body Motions and Twists
Homogeneous Transformation Matrices
Twists
Exponential Coordinate Representation of Rigid-Body Motions
Wrenches
Summary
Software
Notes and References
Exercises
Forward Kinematics
Product of Exponentials Formula
First Formulation: Screw Axes in the Base Frame
Examples
Second Formulation: Screw Axes in the End-Effector Frame
The Universal Robot Description Format
Summary
Software
Notes and References
Exercises
Velocity Kinematics and Statics
Manipulator Jacobian
Space Jacobian
Body Jacobian
Visualizing the Space and Body Jacobian
Relationship between the Space and Body Jacobian
Alternative Notions of the Jacobian
Looking Ahead to Inverse Velocity Kinematics
Statics of Open Chains
Singularity Analysis
Manipulability
Summary
Software
Notes and References
Exercises
Inverse Kinematics
Analytic Inverse Kinematics
6R PUMA-Type Arm
Stanford-Type Arms
Numerical Inverse Kinematics
Newton–Raphson Method
Numerical Inverse Kinematics Algorithm
Inverse Velocity Kinematics
A Note on Closed Loops
Summary
Software
Notes and References
Exercises
Kinematics of Closed Chains
Inverse and Forward Kinematics
3RPR Planar Parallel Mechanism
Stewart–Gough Platform
General Parallel Mechanisms
Differential Kinematics
Stewart–Gough Platform
General Parallel Mechanisms
Singularities
Summary
Notes and References
Exercises
Dynamics of Open Chains
Lagrangian Formulation
Basic Concepts and Motivating Examples
General Formulation
Understanding the Mass Matrix
Lagrangian Dynamics vs. Newton–Euler Dynamics
Dynamics of a Single Rigid Body
Classical Formulation
Twist–Wrench Formulation
Dynamics in Other Frames
Newton–Euler Inverse Dynamics
Derivation
Newton-Euler Inverse Dynamics Algorithm
Dynamic Equations in Closed Form
Forward Dynamics of Open Chains
Dynamics in the Task Space
Constrained Dynamics
Robot Dynamics in the URDF
Actuation, Gearing, and Friction
DC Motors and Gearing
Apparent Inertia
Newton–Euler Inverse Dynamics Algorithm Accounting for Motor Inertias and Gearing
Friction
Joint and Link Flexibility
Summary
Software
Notes and References
Exercises
Trajectory Generation
Definitions
Point-to-Point Trajectories
Straight-Line Paths
Time Scaling a Straight-Line Path
Polynomial Via Point Trajectories
Time-Optimal Time Scaling
The (s,) Phase Plane
The Time-Scaling Algorithm
A Variation on the Time-Scaling Algorithm
Assumptions and Caveats
Summary
Software
Notes and References
Exercises
Motion Planning
Overview of Motion Planning
Types of Motion Planning Problems
Properties of Motion Planners
Motion Planning Methods
Foundations
Configuration Space Obstacles
Distance to Obstacles and Collision Detection
Graphs and Trees
Graph Search
Complete Path Planners
Grid Methods
Multi-Resolution Grid Representation
Grid Methods with Motion Constraints
Sampling Methods
The RRT Algorithm
The PRM Algorithm
Virtual Potential Fields
A Point in C-space
Navigation Functions
Workspace Potential
Wheeled Mobile Robots
Use of Potential Fields in Planners
Nonlinear Optimization
Smoothing
Summary
Notes and References
Exercises
Robot Control
Control System Overview
Error Dynamics
Error Response
Linear Error Dynamics
Motion Control with Velocity Inputs
Motion Control of a Single Joint
Motion Control of a Multi-joint Robot
Task-Space Motion Control
Motion Control with Torque or Force Inputs
Motion Control of a Single Joint
Motion Control of a Multi-joint Robot
Task-Space Motion Control
Force Control
Hybrid Motion–Force Control
Natural and Artificial Constraints
A Hybrid Motion–Force Controller
Impedance Control
Impedance-Control Algorithm
Admittance-Control Algorithm
Low-Level Joint Force/Torque Control
Other Topics
Summary
Software
Notes and References
Exercises
Grasping and Manipulation
Contact Kinematics
First-Order Analysis of a Single Contact
Contact Types: Rolling, Sliding, and Breaking Free
Multiple Contacts
Collections of Bodies
Other Types of Contacts
Planar Graphical Methods
Form Closure
Contact Forces and Friction
Friction
Planar Graphical Methods
Force Closure
Duality of Force and Motion Freedoms
Manipulation
Summary
Notes and References
Exercises
Wheeled Mobile Robots
Types of Wheeled Mobile Robots
Omnidirectional Wheeled Mobile Robots
Modeling
Motion Planning
Feedback Control
Nonholonomic Wheeled Mobile Robots
Modeling
Controllability
Motion Planning
Feedback Control
Odometry
Mobile Manipulation
Summary
Notes and References
Exercises
Summary of Useful Formulas
Other Representations of Rotations
Euler Angles
Algorithm for Computing the ZYX Euler Angles
Other Euler Angle Representations
Roll–Pitch–Yaw Angles
Unit Quaternions
Cayley–Rodrigues Parameters
Denavit–Hartenberg Parameters
Assigning Link Frames
Why Four Parameters are Sufficient
Manipulator Forward Kinematics
Examples
Relation Between the PoE and D–H Representations
A Final Comparison
Optimization and Lagrange Multipliers
Bibliography
Index
MODERN ROBOTICS MECHANICS, PLANNING, AND CONTROL Kevin M. Lynch and Frank C. Park May 3, 2017 This document is the preprint version of Modern Robotics Mechanics, Planning, and Control c Kevin M. Lynch and Frank C. Park This preprint is being made available for personal use only and not for further distribution. The book will be published by Cambridge University Press in May 2017, ISBN 9781107156302. Citations of the book should cite Cambridge University Press as the publisher, with a publication date of 2017. Original figures from this book may be reused provided proper citation is given. More information on the book, including software, videos, and a feedback form can be found at http://modernrobotics.org. Comments are welcome!
Contents Foreword by Roger Brockett Foreword by Matthew Mason Preface 1 Preview 2 Configuration Space 2.1 Degrees of Freedom of a Rigid Body . . . . . . . . . . . . . . . . 2.2 Degrees of Freedom of a Robot . . . . . . . . . . . . . . . . . . . 2.2.1 Robot Joints . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Gr¨ubler’s Formula . . . . . . . . . . . . . . . . . . . . . . 2.3 Configuration Space: Topology and Representation . . . . . . . . 2.3.1 Configuration Space Topology . . . . . . . . . . . . . . . . 2.3.2 Configuration Space Representation . . . . . . . . . . . . 2.4 Configuration and Velocity Constraints . . . . . . . . . . . . . . . 2.5 Task Space and Workspace . . . . . . . . . . . . . . . . . . . . . 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Exercises 3 Rigid-Body Motions 3.1 Rigid-Body Motions in the Plane . . . . . . . . . . . . . . . . . . 3.2 Rotations and Angular Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Rotation Matrices 3.2.2 Angular Velocities . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Exponential Coordinate Representation of Rotation . . . 3.3 Rigid-Body Motions and Twists . . . . . . . . . . . . . . . . . . . i ix xi xiii 1 11 12 15 16 17 23 23 25 29 32 36 38 38 59 62 68 68 76 79 89
ii Contents 3.3.1 Homogeneous Transformation Matrices . . . . . . . . . . 3.3.2 Twists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 Exponential Coordinate Representation of Rigid-Body Mo- 89 97 tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.4 Wrenches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4 Forward Kinematics 137 4.1 Product of Exponentials Formula . . . . . . . . . . . . . . . . . . 140 4.1.1 First Formulation: Screw Axes in the Base Frame . . . . 141 4.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Second Formulation: Screw Axes in the End-Effector Frame148 4.1.3 4.2 The Universal Robot Description Format . . . . . . . . . . . . . 152 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 160 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5 Velocity Kinematics and Statics 171 5.1 Manipulator Jacobian . . . . . . . . . . . . . . . . . . . . . . . . 178 5.1.1 Space Jacobian . . . . . . . . . . . . . . . . . . . . . . . . 178 5.1.2 Body Jacobian . . . . . . . . . . . . . . . . . . . . . . . . 183 5.1.3 Visualizing the Space and Body Jacobian . . . . . . . . . 185 5.1.4 Relationship between the Space and Body Jacobian . . . 187 5.1.5 Alternative Notions of the Jacobian . . . . . . . . . . . . 187 5.1.6 Looking Ahead to Inverse Velocity Kinematics . . . . . . 189 5.2 Statics of Open Chains . . . . . . . . . . . . . . . . . . . . . . . . 190 5.3 Singularity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.4 Manipulability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 5.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 5.8 Exercises 6 Inverse Kinematics 219 6.1 Analytic Inverse Kinematics . . . . . . . . . . . . . . . . . . . . . 221 6R PUMA-Type Arm . . . . . . . . . . . . . . . . . . . . 221 Stanford-Type Arms . . . . . . . . . . . . . . . . . . . . . 225 6.1.1 6.1.2 May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
Contents iii 6.2 Numerical Inverse Kinematics . . . . . . . . . . . . . . . . . . . . 226 6.2.1 Newton–Raphson Method . . . . . . . . . . . . . . . . . . 227 6.2.2 Numerical Inverse Kinematics Algorithm . . . . . . . . . 227 6.3 Inverse Velocity Kinematics . . . . . . . . . . . . . . . . . . . . . 232 6.4 A Note on Closed Loops . . . . . . . . . . . . . . . . . . . . . . . 234 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 6.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 6.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 236 6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 7 Kinematics of Closed Chains 7.1 Inverse and Forward Kinematics 7.1.1 7.1.2 7.1.3 General Parallel Mechanisms 245 . . . . . . . . . . . . . . . . . . 247 3×RPR Planar Parallel Mechanism . . . . . . . . . . . . . 247 Stewart–Gough Platform . . . . . . . . . . . . . . . . . . 249 . . . . . . . . . . . . . . . . 251 7.2 Differential Kinematics . . . . . . . . . . . . . . . . . . . . . . . . 252 Stewart–Gough Platform . . . . . . . . . . . . . . . . . . 252 . . . . . . . . . . . . . . . . 254 7.3 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 7.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 262 7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 7.2.1 7.2.2 General Parallel Mechanisms 8 Dynamics of Open Chains 271 8.1 Lagrangian Formulation . . . . . . . . . . . . . . . . . . . . . . . 272 8.1.1 Basic Concepts and Motivating Examples . . . . . . . . . 272 8.1.2 General Formulation . . . . . . . . . . . . . . . . . . . . . 277 8.1.3 Understanding the Mass Matrix . . . . . . . . . . . . . . 279 8.1.4 Lagrangian Dynamics vs. Newton–Euler Dynamics . . . . 281 8.2 Dynamics of a Single Rigid Body . . . . . . . . . . . . . . . . . . 283 8.2.1 Classical Formulation . . . . . . . . . . . . . . . . . . . . 283 8.2.2 Twist–Wrench Formulation . . . . . . . . . . . . . . . . . 288 . . . . . . . . . . . . . . . . . 290 8.2.3 Dynamics in Other Frames . . . . . . . . . . . . . . . . . . 291 8.3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 8.3.2 Newton-Euler Inverse Dynamics Algorithm . . . . . . . . 294 8.4 Dynamic Equations in Closed Form . . . . . . . . . . . . . . . . . 294 8.5 Forward Dynamics of Open Chains . . . . . . . . . . . . . . . . . 298 8.6 Dynamics in the Task Space . . . . . . . . . . . . . . . . . . . . . 300 8.7 Constrained Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 301 8.3 Newton–Euler Inverse Dynamics May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
iv Contents 8.8 Robot Dynamics in the URDF . . . . . . . . . . . . . . . . . . . 303 8.9 Actuation, Gearing, and Friction . . . . . . . . . . . . . . . . . . 303 8.9.1 DC Motors and Gearing . . . . . . . . . . . . . . . . . . . 305 8.9.2 Apparent Inertia . . . . . . . . . . . . . . . . . . . . . . . 310 8.9.3 Newton–Euler Inverse Dynamics Algorithm Accounting for Motor Inertias and Gearing . . . . . . . . . . . . . . . 312 8.9.4 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 8.9.5 Joint and Link Flexibility . . . . . . . . . . . . . . . . . . 314 8.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 8.11 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 8.12 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 320 8.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 9 Trajectory Generation 325 9.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 . . . . . . . . . . . . . . . . . . . . . 326 9.2 Point-to-Point Trajectories 9.2.1 Straight-Line Paths . . . . . . . . . . . . . . . . . . . . . 326 9.2.2 Time Scaling a Straight-Line Path . . . . . . . . . . . . . 328 9.3 Polynomial Via Point Trajectories . . . . . . . . . . . . . . . . . 334 9.4 Time-Optimal Time Scaling . . . . . . . . . . . . . . . . . . . . . 336 9.4.1 The (s, ˙s) Phase Plane . . . . . . . . . . . . . . . . . . . . 339 9.4.2 The Time-Scaling Algorithm . . . . . . . . . . . . . . . . 341 9.4.3 A Variation on the Time-Scaling Algorithm . . . . . . . . 342 9.4.4 Assumptions and Caveats . . . . . . . . . . . . . . . . . . 344 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 9.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 9.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 9.8 Exercises 10 Motion Planning 353 10.1 Overview of Motion Planning . . . . . . . . . . . . . . . . . . . . 353 10.1.1 Types of Motion Planning Problems . . . . . . . . . . . . 354 10.1.2 Properties of Motion Planners . . . . . . . . . . . . . . . 355 10.1.3 Motion Planning Methods . . . . . . . . . . . . . . . . . . 356 10.2 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 10.2.1 Configuration Space Obstacles . . . . . . . . . . . . . . . 358 10.2.2 Distance to Obstacles and Collision Detection . . . . . . . 362 10.2.3 Graphs and Trees . . . . . . . . . . . . . . . . . . . . . . . 364 10.2.4 Graph Search . . . . . . . . . . . . . . . . . . . . . . . . . 365 10.3 Complete Path Planners . . . . . . . . . . . . . . . . . . . . . . . 368 May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
Contents v 10.6 Virtual Potential Fields 10.4 Grid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 10.4.1 Multi-Resolution Grid Representation . . . . . . . . . . . 372 . . . . . . . . . . 373 10.4.2 Grid Methods with Motion Constraints 10.5 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 378 10.5.1 The RRT Algorithm . . . . . . . . . . . . . . . . . . . . . 379 10.5.2 The PRM Algorithm . . . . . . . . . . . . . . . . . . . . . 384 . . . . . . . . . . . . . . . . . . . . . . . 386 10.6.1 A Point in C-space . . . . . . . . . . . . . . . . . . . . . . 386 10.6.2 Navigation Functions . . . . . . . . . . . . . . . . . . . . . 389 10.6.3 Workspace Potential . . . . . . . . . . . . . . . . . . . . . 390 10.6.4 Wheeled Mobile Robots . . . . . . . . . . . . . . . . . . . 391 10.6.5 Use of Potential Fields in Planners . . . . . . . . . . . . . 392 10.7 Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . . . . 392 10.8 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 10.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 10.10Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 397 10.11Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 11 Robot Control 403 11.1 Control System Overview . . . . . . . . . . . . . . . . . . . . . . 404 11.2 Error Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 11.2.1 Error Response . . . . . . . . . . . . . . . . . . . . . . . . 406 11.2.2 Linear Error Dynamics . . . . . . . . . . . . . . . . . . . 406 11.3 Motion Control with Velocity Inputs . . . . . . . . . . . . . . . . 413 11.3.1 Motion Control of a Single Joint . . . . . . . . . . . . . . 414 11.3.2 Motion Control of a Multi-joint Robot . . . . . . . . . . . 418 11.3.3 Task-Space Motion Control . . . . . . . . . . . . . . . . . 419 11.4 Motion Control with Torque or Force Inputs . . . . . . . . . . . . 420 11.4.1 Motion Control of a Single Joint . . . . . . . . . . . . . . 421 11.4.2 Motion Control of a Multi-joint Robot . . . . . . . . . . . 429 11.4.3 Task-Space Motion Control . . . . . . . . . . . . . . . . . 433 11.5 Force Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 11.6 Hybrid Motion–Force Control . . . . . . . . . . . . . . . . . . . . 437 11.6.1 Natural and Artificial Constraints . . . . . . . . . . . . . 437 11.6.2 A Hybrid Motion–Force Controller . . . . . . . . . . . . . 439 11.7 Impedance Control . . . . . . . . . . . . . . . . . . . . . . . . . . 441 11.7.1 Impedance-Control Algorithm . . . . . . . . . . . . . . . . 443 11.7.2 Admittance-Control Algorithm . . . . . . . . . . . . . . . 444 . . . . . . . . . . . . . . . 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 11.8 Low-Level Joint Force/Torque Control 11.9 Other Topics May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
vi Contents 11.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 11.11Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 11.12Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 452 11.13Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 12 Grasping and Manipulation 12.1 Contact Kinematics 461 . . . . . . . . . . . . . . . . . . . . . . . . . 463 12.1.1 First-Order Analysis of a Single Contact . . . . . . . . . . 463 12.1.2 Contact Types: Rolling, Sliding, and Breaking Free . . . . 465 12.1.3 Multiple Contacts . . . . . . . . . . . . . . . . . . . . . . 468 12.1.4 Collections of Bodies . . . . . . . . . . . . . . . . . . . . . 472 12.1.5 Other Types of Contacts . . . . . . . . . . . . . . . . . . . 472 12.1.6 Planar Graphical Methods . . . . . . . . . . . . . . . . . . 473 12.1.7 Form Closure . . . . . . . . . . . . . . . . . . . . . . . . . 478 12.2 Contact Forces and Friction . . . . . . . . . . . . . . . . . . . . . 484 12.2.1 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 12.2.2 Planar Graphical Methods . . . . . . . . . . . . . . . . . . 487 12.2.3 Force Closure . . . . . . . . . . . . . . . . . . . . . . . . . 489 12.2.4 Duality of Force and Motion Freedoms . . . . . . . . . . . 494 12.3 Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 12.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 503 12.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 13 Wheeled Mobile Robots 513 13.1 Types of Wheeled Mobile Robots . . . . . . . . . . . . . . . . . . 514 13.2 Omnidirectional Wheeled Mobile Robots . . . . . . . . . . . . . . 515 13.2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 13.2.2 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . 520 13.2.3 Feedback Control . . . . . . . . . . . . . . . . . . . . . . . 520 13.3 Nonholonomic Wheeled Mobile Robots . . . . . . . . . . . . . . . 520 13.3.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 13.3.2 Controllability . . . . . . . . . . . . . . . . . . . . . . . . 528 13.3.3 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . 537 13.3.4 Feedback Control . . . . . . . . . . . . . . . . . . . . . . . 542 13.4 Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 13.5 Mobile Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 548 13.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 13.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 554 13.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
分享到:
收藏