logo资料库

Digital Modulation Techniques, Second Edition.pdf

第1页 / 共1039页
第2页 / 共1039页
第3页 / 共1039页
第4页 / 共1039页
第5页 / 共1039页
第6页 / 共1039页
第7页 / 共1039页
第8页 / 共1039页
资料共1039页,剩余部分请下载后查看
Front-cover
Front-matter
Contents
Preface
Chapter 1 Introduction
1.2 COMMUNICATION CHANNELS
1.2.1 AdditiveWhite Gaussian Noise Channel
1.2.2 Bandlimited Channel
1.2.3 Fading Channel
1.3 BASIC MODULATION METHODS
1.4 CRITERIA OF CHOOSINGMODULATION SCHEMES
1.4.1 Power Efficiency
1.4.2 Bandwidth Efficiency
1.4.3 System Complexity
1.5 OVERVIEWOF DIGITAL MODULATION SCHEMES AND COMPARISON
References
Selected Bibliography
Chapter 2 Baseband Modulation (Line Codes)
2.1 DIFFERENTIAL CODING
2.2 DESCRIPTION OF LINE CODES
2.2.1 Nonreturn-to-Zero Codes
2.2.2 Return-to-Zero Codes
2.2.3 Pseudoternary Codes (Including AMI)
2.2.4 Biphase Codes (Including Manchester)
2.2.5 Delay Modulation (Miller Code)
2.3 POWER SPECTRAL DENSITY OF LINE CODES
2.3.1 PSD of Nonreturn-to-Zero Codes
2.3.2 PSD of Return-to-Zero Codes
2.3.3 PSD of Pseudoternary Codes
2.3.4 PSD of Biphase Codes
2.3.5 PSD of Delay Modulation
2.4 BIT ERROR RATE OF LINE CODES
2.4.1 BER of Binary Codes
2.4.2 BER of Pseudoternary Codes
2.4.3 BER of Biphase Codes
2.4.4 BER of Delay Modulation
2.5 SUBSTITUTION LINE CODES
2.5.1 Binary N -Zero Substitution Codes
2.5.2 High Density Bipolar n Codes
2.6 BLOCK LINE CODES
2.6.1 Coded Mark Inversion Codes
2.6.2 Differential Mode Inversion Codes
2.6.3 mBnB Codes
2.6.3.1 Carter Code
2.6.3.2 Griffiths Code
2.6.3.3 PAM-PPMCode
2.6.3.4 2B3B dc-Constrained Code
2.6.4 mB1C Codes
2.6.5 DmB1MCodes
2.6.6 PFmB(m+1)B Codes
2.6.7 kBnT Codes
2.6.7.1 4B3T Code
2.6.7.2 MS43 Code
2.6.7.3 6B4T Code
2.7 PULSE TIME MODULATION
2.7.1 Formats of Pulse Time Modulation
2.7.2 Spectra of Pulse TimeModulation
2.7.3 Performance of Pulse TimeModulation
2.8 SUMMARY
References
Selected Bibliography
Chapter 3 Frequency Shift Keying
3.1 BINARY FSK
3.1.1 Binary FSK Signal and Modulator
3.1.2 Power Spectral Density
3 .2 COHE RENT DEMODULATI ON AND E RRO R PE RFO RMANCE
3.3 NONCOHERENT DEMODULATION AND ERROR PERFORMANCE
3.4 M-ARY FSK
3.4.1 MFSK Signal and Power Spectral Density
3.4.2 Modulator, Demodulator, and Error Performance
3.5 DEMODULATION USING DISCRIMINATOR
3.6 SYNCHRONIZATION
3.7 SUMMARY
References
Selected Bibliography
Chapter 4 Phase Shift Keying
4.1 BINARY PSK
4.2 DIFFERENTIAL BPSK
4.3 M-ARY PSK
4.4 PSD OF MPSK
4.5 DIFFERENTIAL MPSK
4.6 QUADRATURE PSK
4.7 DIFFERENTIAL QPSK
4.8 OFFSET QPSK
4.9 π/4-QPSK
4.10 SYNCHRONIZATION
4.10.1 Carrier Recovery
4.10.2 Clock Recovery
4.10.3 Effects of Phase and Timing Error
4.11 SUMMARY
References
Selected Bibliography
Chapter 5 Minimum Shift Keying and MSK-Type Modulations
5.1 DESCRIPTION OF MSK
5.1.1 MSK Viewed as a SinusoidalWeighted OQPSK
5.1.2 MSK Viewed as a Special Case of CPFSK
5.2 POWER SPECTRUM AND BANDWIDTH
5.2.1 Power Spectral Density of MSK
5.2.2 Bandwidth of MSK and Comparison with PSK
5.3 MODULATOR
5.4 DEMODULATOR
5.5 SYNCHRONIZATION
5.6 ERROR PROBABILITY
5.7 SERIAL MSK
5.7.1 SMSK Description
5.7.2 SMSKModulator
5.7.3 SMSK Demodulator
5.7.4 Conversion and Matched Filter Implementation
5.7.5 Synchronization of SMSK
5.8 MSK-TYPE MODULATION SCHEMES
5.9 SINUSOIDAL FREQUENCY SHIFT KEYING
5.10 SIMON’S CLASS OF SYMBOL-SHAPING PULSES
5.11 RABZEL AND PASUPATHY’S SYMBOL-SHAPING PULSES
5.12 BAZIN’S CLASS OF SYMBOL-SHAPING PULSES
5.13 MSK-TYPE SIGNAL’S SPECTRAL MAIN LOBE
5.14 SUMMARY
References
Selected Bibliography
Chapter 6 Continuous Phase Modulation
6.1 DESCRIPTION OF CPM
6.1.1 Various Modulation Pulse Shapes
6.1.1.1 Rectangular (LREC), CPFSK, and MSK
6.1.1.2 Raised Cosine (LRC)
6.1.1.3 Spectrally Raised Cosine (LSRC)
6.1.1.4 Tamed Frequency Modulation (TFM)
6.1.1.5 Gaussian MSK (GMSK)
6.1.2 Phases and State of the CPM Signal
6.1.3 Phase Tree and Trellis and State Trellis
6.2 POWER SPECTRAL DENSITY
6.2.1 Steps for Calculating PSDs for General CPM Signals
6.2.2 Effects of Pulse Shape, Modulation Index, and A Priori Distribution
6.2.3 PSD of CPFSK
6.3 MLSD FOR CPM AND ERROR PROBABILITY
6.3.1 Error Probability and Euclidean Distance
6.3.2 Comparison of Minimum Distances
6.4 MODULATOR
6.4.1 Quadrature Modulator
6.4.2 Serial Modulator
6.4.2.1 PLL Modulator
6.4.2.2 BPF-Limiter Modulator
6.4.3 All-Digital Modulator
6.5 DEMODULATOR
6.5.1 Optimum ML Coherent Demodulator
6.5.2 Optimum ML Noncoherent Demodulator
6.5.3 Viterbi Demodulator
6.5.4 Reduced-Complexity Viterbi Demodulator
6.5.5 Reduction of the Number of Filters for LREC CPM
6.5.6 ML Block Detection of Noncoherent CPM
6.5.7 MSK-Type Demodulator
6.5.8 Differential and Discriminator Demodulator
6.5.9 Other Types of Demodulators
6.6 SYNCHRONIZATION
6.6.1 MSK-Type Synchronizer
6.6.2 Squaring Loop and Fourth-Power Loop Synchronizers
6.6.3 Other Types of Synchronizers
6.7 GAUSSIAN MINIMUM SHIFT KEYING (GMSK)
6.8 SUMMARY
References
Chapter 7 Multi-h Continuous Phase Modulation
7.1 MHPM SIGNAL, PHASE TREE, AND TRELLIS
7.2 POWER SPECTRAL DENSITY
7.3 DISTANCE PROPERTIES AND ERROR PROBABILITY
7.4 MODULATOR
7.5 DEMODULATOR AND SYNCHRONIZATION
7.5.1 A Simple ML Demodulator for Multi-h Binary CPFSK
7.5.2 Joint Demodulation and Carrier Synchronization of Multi-h CPFSK
7.5.3 Joint Carrier Phase Tracking and Data Detection of Multi-h CPFSK
7.5.4 Joint Demodulation, Carrier Synchronization, and Symbol Synchronization of M-ary Multi-h CPFSK
7.5.5 Synchronization of MHPM
7.6 IMPROVED MHPM SCHEMES
7.6.1 MHPM with Asymmetrical Modulation Indexes
7.6.2 Multi-T Realization of Multi-h Phase Codes
7.6.3 Correlatively Encoded Multi-h Signaling Technique
7.6.4 Nonlinear Multi-h CPFSK
7.7 SUMMARY
APPENDIX 7A ORTHONORMAL BASE FUNCTIONS
References
Selected Bibliography
Chapter 8 Amplitude Shift Keying
8.1 PULSE AMPLITUDE MODULATION
8.1.1 Power Spectral Density
8.1.2 Optimum Detection and Error Probability
8.2 BIPOLAR SYMMETRICAL MASK
8.2.1 Power Spectral Density
8.2.2 Modulator and Demodulator
8.2.3 Error Probability
8.3 UNIPOLAR M-ARY ASK
8.3.1 Power Spectral Density
8.3.2 Modulator and Demodulator
8.3.3 Error Probability of Coherent Demodulation
8.3.4 Error Probability of Noncoherent Demodulation
8.4 BINARY ASK (ON-OFF KEYING)
8.5 COMPARING MASK WITH MPSK
8.6 SUMMARY
References
Selected Bibliography
Chapter 9 Quadrature Amplitude Modulation
9.1 QAM SIGNAL DESCRIPTION
9.2 QAM CONSTELLATIONS
9.2.1 Square QAM
9.3 POWER SPECTRAL DENSITY
9.4 MODULATOR
9.5 DEMODULATOR
9.6 ERROR PROBABILITY
9.7 SYNCHRONIZATION
9.8 DIFFERENTIAL CODING IN QAM
9.9 SUMMARY
APPENDIX 9A PROOF OF (9.39)
References
Selected Bibliography
Chapter 10 Nonconstant-Envelope Bandwidth-Efficient Modulations
10.1 TWO-SYMBOL-PERIOD SCHEMES AND OPTIMUM DEMODULATOR
10.2 QUASI-BANDLIMITED MODULATION
10.3 QORC, SQORC, AND QOSRC
10.4 IJF-OQPSK AND TSI-OQPSK
10.5 SUPERPOSED-QAM
10.6 QUADRATURE QUADRATURE PSK
10.7 SUMMARY
References
Chapter 11 Modulations in Fading Channels, Equalization, and Diversity
11.1 FADING CHANNEL CHARACTERISTICS
11.1.1 Channel Characteristics
11.1.2 Channel Classification
11.1.3 Fading Envelope Distributions
11.2 DIGITAL MODULATION IN SLOW, FLAT FADING CHANNELS
11.2.1 Rayleigh Fading Channel
11.2.2 Rician Fading Channel
11.3 DIGITAL MODULATION IN FREQUENCY SELECTIVE CHANNELS
11.4 π/4-DQPSK IN FADING CHANNELS
11.5 MHPM IN FADING CHANNELS
11.6 QAM IN FADING CHANNELS
11.6.1 Square QAM
11.6.2 Star QAM
11.7 OVERVIEWOF REMEDIAL MEASURES AGAINST CHANNEL IMPAIRMENTS
11.8 CHANNEL ESTIMATION AND CORRECTION
11.8.1 Pilot ToneMethods
11.8.2 Pilot Symbol Assisted Modulation (PSAM)
11.8.3 Decision Feedback Channel Estimation (DFCE)
11.9 EQUALIZATION
11.9.1 Linear Equalizers (LE)
11.9.1.1 Zero-Forcing LE
11.9.1.2 Minimum Mean Squared Error LE
11.9.2 Decision-Feedback Equalizers (DFE)
11.9.2.1 Zero-Forcing DFE
11.9.2.2 Minimum Mean Square Error DFE
11.10 DIVERSITY RECEPTION
11.10.1 Diversity Techniques
11.10.2 Combining Techniques
11.11 MIMOWIRELESS LINK
11.11.1 Capacity of MIMO Channel
11.11.1.1 Deterministic MIMO Channel
11.11.1.2 Frequency-Flat Slow Fading MIMO Channel
11.11.1.3 Frequency-Selective Slow Fading MIMO Channel
11.11.2 MIMO Signaling: Space-Time Coding and Spatial Multiplexing
11.11.2.1 Space-Time Coding
11.11.2.2 Spatial Multiplexing
11.12 SUMMARY
APPENDIX 11A DERIVATION OF (11.80)
References
Selected Bibliography
Chapter 12 Orthogonal Frequency Division Multiplexing
12.1 OFDM SIGNAL AND SPECTRUM
12.1.1 Baseband OFDMSignal
12.1.2 Bandpass OFDMSignal
12.2 OFDM MODULATOR AND DEMODULATOR
12.2.1 Analog OFDMModem
12.2.2 DFT-Based Digital OFDM Modem
12.3 REAL-OUTPUT DFT
12.4 FFT ALGORITHMS
12.5 PARTIAL FFT ALGORITHMS
12.5.1 The Pruned Partial FFT
12.5.2 Transform Decomposition
12.6 CYCLIC EXTENSION
12.6.1 Continuous-Time OFDM
12.6.2 Discrete-Time OFDM
12.7 SPECTRUM SHAPING
12.8 SUMMARY
APPENDIX 12A DERIVATION OF (12.23), (12.24), AND (12.25)
APPENDIX 12B DERIVATION OF DFT-BASED OFDM MODEM
APPENDIX 12C RECOVERING DATA FROMREAL OFDM SIGNAL
APPENDIX 12D METHOD OF GENERATING REAL OFDMSIGNAL
References
Selected Bibliography
Chapter 13 Peak-to-Average Power Ratio Reduction
13.1 MAXIMUMPEAK-TO-AVERAGE POWER RATIO
13.2 ENVELOPE POWER AND PAPR DISTRIBUTION
13.3 INTRODUCTION TO PAPR REDUCTION TECHNIQUES
13.4 CLIPPING AND CLIPPING NOISE MITIGATION
13.4.1 Decision-Aided Reconstruction
13.4.2 Oversampling and Frequency-Domain Filtering
13.4.3 Iterative Estimation and Canceling
13.5 AMPLITUDE ALTERATION OTHER THAN CLIPPING
13.5.1 Companding
13.5.2 Complementary Clipping Transform
13.6 PRE-IFFT DATA ALTERATION
13.6.1 Selective Mapping
13.6.2 Repeated Random Phasor Transform
13.6.3 Selective Scrambling
13.6.4 Partial Transmit Sequences
13.6.5 Dummy Sequence Insertion
13.7 CODING
13.7.1 Parity-Check Coding
13.7.2 Rudin-Shapiro Coding
13.7.3 Golay Complementary Sequences and Reed-Muller Codes
13.8 SUMMARY
References
Selected Bibliography
Chapter 14 Synchronization for OFDM
14.1 EFFECT OF CARRIER FREQUENCY OFFSET AND PHASE NOISE
14.2 EFFECT OF TIMING ERRORS
14.3 ARCHITECTURE OF SYNCHRONIZATION SYSTEM
14.4 SYNCHRONIZATION METHODS OVERVIEW
14.5 SYNCHRONIZATION USING CYCLIC EXTENSION
14.6 SYNCHRONIZATION USING PILOT SYMBOLS
14.7 THE SCHMIDL-COX SYNCHRONIZER
14.7.1 Frame/Symbol Timing Estimator
14.7.2 Performance of Timing Estimator
14.7.3 Frequency Offset Estimator
14.7.4 Performance of Frequency Offset Estimator
14.8 THE COULSON SYNCHRONIZER
14.9 THE MINN-ZENG-BHARGAVA SYNCHRONIZER
14.10 THE SHI-SERPEDIN SYNCHRONIZER
14.11 MORE TRAINING SYMBOL PATTERNS
14.12 SYNCHRONIZATION FOR THE IEEE 802.11A STANDARD
14.13 SUMMARY
References
Selected Bibliography
Chapter 15 OFDM in Multipath Fading Channels
15.1 PERFORMANCE OF OFDM IN FADING CHANNELS
15.1.1 Frequency Flat Slow Fading Channel
15.1.2 Frequency Selective Slow Fading Channel
15.1.2.1 Time-Domain Fading Statistics
15.1.2.2 Frequency-Domain Fading Statistics
15.1.2.3 Channels with Uncorrelated Paths
15.1.2.4 Channels with Correlated Paths
15.1.2.5 Subcarrier BER Evaluation
15.1.3 Frequency Flat Fast Fading Channel
15.1.4 Frequency Selective Fast Fading Channel
15.1.5 Summary of Expressions of Fading Factors and ICI Terms
15.2 CHANNEL ESTIMATION AND EQUALIZATION
15.2.1 Pilot-Assisted Channel Estimation
15.2.2 Slow Fading Channel Estimation and Equalization
15.2.2.1 LMMSE (Wiener) Estimator
15.2.2.2 2-D AsymmetricWiener Filters
15.2.3 Reduction of Complexity of the LMMSE Estimator
15.2.3.1 Cascaded 1-D Filtering
15.2.3.2 DFT-Based Lower Rank Approximation
15.2.3.3 SVD-Based Lower Rank Approximation
15.2.4 Estimator for Fast Fading Channels
15.2.5 Decision-Directed Channel Estimation
15.3 OTHER REMEDIAL MEASURES AGAINST FADING
15.3.1 Differential Detection
15.3.2 Diversity Reception
15.3.3 Coded OFDM(COFDM)
15.3.4 MIMO-OFDM
15.4 SUMMARY
APPENDIX 15A DERIVATION OF (15.39) AND (15.47)
APPENDIX 15B PROOF OF (15.58), (15.65), (15.66), AND (15.67)
APPENDIX 15C PROOF OF (15.105)
References
Selected Bibliography
Chapter 16 Wavelet OFDM and MASK-OFDM
16.1 WAVELET FUNDAMENTALS
16.2 MULTISCALEWAVELET MODULATION (MSM)
16.3 FRACTAL MODULATION
16.4 WAVELET PACKET MODULATION (WPM)
16.5 WAVELET PAM
16.6 M-BAND WAVELET MODULATION (MWM)
16.7 OVERLAPPED DISCRETE WAVELET MULTITONE (DWMT) MODULATION
16.8 DCT-BASED OFDM: MASK-OFDM
16.9 SUMMARY
APPENDIX 16A POWER SPECTRUM OF MSM
References
Selected Bibliography
Appendix A Power Spectral Densities of Signals
A.1 BANDPASS SIGNALS AND SPECTRA
A.2 BANDPASS STATIONARY RANDOM PROCESS AND PSD
A.3 POWER SPECTRAL DENSITIES OF DIGITAL SIGNALS
A.3.1 Case 1: Data Symbols Are Uncorrelated
A.3.2 Case 2: Data Symbols Are Correlated
A.4 POWER SPECTRAL DENSITIES OF DIGITAL BANDPASS SIGNALS
A.5 POWER SPECTRAL DENSITIES OF CPM SIGNALS
References
Appendix B Detection of Signals
B.1 DETECTION OF DISCRETE SIGNALS
B.1.1 Binary Hypothesis Test
B.1.2 Decision Criteria
B.1.2.1 Bayes Criterion
B.1.2.2 Minimum Probability of Error Criterion
B.1.2.3 Maximum A Posteriori Probability Criterion (MAP)
B.1.2.4 Maximum Likelihood Criterion
B.1.3 M Hypotheses
B.2 DETECTION OF CONTINUOUS SIGNALS WITH KNOWN PHASES
B.2.1 Detection of Binary Signals
B.2.1.1 Receiver Structure
B.2.1.2 Matched Filter Maximizes Signal-to-Noise Ratio
B.2.1.3 Error Probability
B.2.2 Detection of M-ary Signals
B.2.2.1 Receiver Structure
B.2.2.2 Error Probability
B.3 DETECTION OF CONTINUOUS SIGNALSWITH UNKNOWN PHASES
B.3.1 Receiver Structure
B.3.2 Receiver Error Performance
B.3.2.1 Binary Orthogonal Signals
B.3.2.2 M-ary Orthogonal Signals
References
Appendix C Mathematical Tables
C.1 TRIGONOMETRY IDENTITIES
C.2 FOURIER TRANSFORM PAIRS
C.3 FOURIER TRANSFORM THEOREMS
C.4 DISCRETE FOURIER TRANSFORM THEOREMS
C.5 Q-FUNCTION AND ERROR FUNCTIONS
C.6 RELATIONS BETWEEN Q-FUNCTION AND ERROR FUNCTIONS
C.7 APPROXIMATION OF Q-FUNCTION
References
Acronyms
About the Author
Index
Digital Modulation Techniques Second Edition
For a complete listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book.
Digital Modulation Techniques Second Edition Fuqin Xiong a r t e c h h o u s e . c o m
Library of Congress Cataloging-in-Publication Data A catalog record of this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data A catalogue record of this book is available from the British Library. Cover design by Igor Valdman © 2006 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including pho- tocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-863-0 10 9 8 7 6 5 4 3 2 1
Contents xvii Preface 1 Chapter 1 Introduction 1 1.1 Digital Communication Systems 4 1.2 Communication Channels 4 1.2.1 Additive White Gaussian Noise Channel 6 1.2.2 Bandlimited Channel 7 1.2.3 Fading Channel 7 1.3 Basic Modulation Methods 9 1.4 Criteria of Choosing Modulation Schemes 10 1.4.1 Power Efficiency 10 1.4.2 Bandwidth Efficiency 11 1.4.3 System Complexity 1.5 Overview of Digital Modulation Schemes and Comparison 12 17 References Selected Bibliography 17 Chapter 2 Baseband Modulation (Line Codes) 2.1 Differential Coding 2.2 Description of Line Codes 2.2.1 Nonreturn-to-Zero Codes 2.2.2 Return-to-Zero Codes 2.2.3 Pseudoternary Codes (Including AMI) 2.2.4 Biphase Codes (Including Manchester) 2.2.5 Delay Modulation (Miller Code) 2.3 Power Spectral Density of Line Codes 2.3.1 PSD of Nonreturn-to-Zero Codes 2.3.2 PSD of Return-to-Zero Codes 2.3.3 PSD of Pseudoternary Codes 2.3.4 PSD of Biphase Codes 19 20 24 26 27 28 29 29 30 32 36 37 39 v
vi Digital Modulation Techniques 42 2.3.5 PSD of Delay Modulation 45 2.4 Bit Error Rate of Line Codes 46 2.4.1 BER of Binary Codes 51 2.4.2 BER of Pseudoternary Codes 56 2.4.3 BER of Biphase Codes 59 2.4.4 BER of Delay Modulation 59 2.5 Substitution Line Codes 60 2.5.1 Binary N-Zero Substitution Codes 62 2.5.2 High Density Bipolar n Codes 64 2.6 Block Line Codes 65 2.6.1 Coded Mark Inversion Codes 71 2.6.2 Differential Mode Inversion Codes 73 2.6.3 mBnB Codes 76 2.6.4 mB1C Codes 78 2.6.5 DmB1M Codes 79 2.6.6 PFmB(m+1)B Codes 80 2.6.7 kBnT Codes 83 2.7 Pulse Time Modulation 2.7.1 Formats of Pulse Time Modulation 84 2.7.2 Spectra of Pulse Time Modulation 88 2.7.3 Performance of Pulse Time Modulation 91 2.8 Summary 93 95 References Selected Bibliography 98 99 Chapter 3 Frequency Shift Keying 99 3.1 Binary FSK 99 3.1.1 Binary FSK Signal and Modulator 104 3.1.2 Power Spectral Density 107 3.2 Coherent Demodulation and Error Performance 110 3.3 Noncoherent Demodulation and Error Performance 114 3.4 M-ary FSK 3.4.1 MFSK Signal and Power Spectral Density 114 3.4.2 Modulator, Demodulator, and Error Performance 116 3.5 Demodulation Using Discriminator 127 133 3.6 Synchronization 133 3.7 Summary 134 References Selected Bibliography 134
p / )i vii Contents Chapter 4 Phase Shift Keying 4.1 Binary PSK 4.2 Differential BPSK 4.3 M-ary PSK 4.4 PSD of MPSK Hj ( 135 135 141 148 159 160 166 173 180 183 191 192 196 197 201 203 205 205 4.5 Differential MPSK 4.6 Quadrature PSK 4.7 Differential QPSK 4.8 Offset QPSK 4.9 p /4-QPSK 4.10 Synchronization 4.10.1 Carrier Recovery 4.10.2 Clock Recovery 4.10.3 Effects of Phase and Timing Error 4.11 Summary Appendix 4A Derivation of References Selected Bibliography 207 Chapter 5 Minimum Shift Keying and MSK-Type Modulations 5.1 Description of MSK 208 5.1.1 MSK Viewed as a Sinusoidal Weighted OQPSK 208 213 5.1.2 MSK Viewed as a Special Case of CPFSK 215 5.2 Power Spectrum and Bandwidth 5.2.1 Power Spectral Density of MSK 215 5.2.2 Bandwidth of MSK and Comparison with PSK 216 219 5.3 Modulator 222 5.4 Demodulator 226 5.5 Synchronization 228 5.6 Error Probability 5.7 Serial MSK 231 231 5.7.1 SMSK Description 233 5.7.2 SMSK Modulator 5.7.3 SMSK Demodulator 235 5.7.4 Conversion and Matched Filter Implementation 239 243 5.7.5 Synchronization of SMSK 243 5.8 MSK-Type Modulation Schemes 248 5.9 Sinusoidal Frequency Shift Keying 5.10 Simon’s Class of Symbol-Shaping Pulses 252 5.11 Rabzel and Pasupathy’s Symbol-Shaping Pulses 259
分享到:
收藏