ˇ˘˜)§
5‘zn˜:6`£ A ⁄
£ 2010 2011 ˘c1 1 ˘ˇ⁄
˘
6¶
⁄1
!JK£15'⁄. ((J.
1. –eØf (x1, x2) = x2
1 − 2x1x2 + x2
2 + x1 + x2‘{§(·£
⁄
A. T…Œ·…Œ¶
C. T…ŒHesse‰¶
2. “‘zflK{min x2
3:x = (0, 0)T ?e1£
1+x2
A. (1, 1)T ;
C. (1,−2)T ;
B. f (¯x) ≤ f (ˆx) + ∇f (ˆx)T (¯x − ˆx), ∀¯x, ˆx ∈ R2¶
D. T…Œ4:·4:.
2−2x1−4x2+6 | −2x1+x2+1 ≥ 0;−x1−x2+2 ≥ 0; x1, x2 ≥ 0}
⁄
B. (−2, 1)T ;
D. (−2,−1)T .
3. “‘zflK{min f (x) = (x1− 1)2 + x2 | − x1− x2 + 2 ≥ 0; x2 ≥ 0}K-T:£
⁄
A. (1, 0)T ¶
B. (0, 1)T ¶
C. (2, 0)T ¶
D. (0, 2)T .
4. ˜8S = {(x1, x2) | 0 < x1 < 2; 0 < x2 < 1}, K£
⁄
A. S8, k4:;
C. S8, ˆ4:;
B. S·8, k4:;
D. S·8, ˆ4:.
5. ˜55y{min z = −x1 − 2x2 | − 2x1 + x2 ≤ 2;−x1 + x2 ≤ 3; x1, x2 ≥ 0}, K£
⁄
A. (1, 2)T ·4;
C. (2, 1)T ·4;
B. (1, 0)T ·ˆ.;
D. (0, 1)T ·ˆ..
!WK£24'⁄.
1. 55yflK{min cT x | Ax = b; x ≥ 0}ØflK
2. ƒ)ˆ‘zflKmin f (x) = x2
{|¢d(k) =
3. A n Ø¡‰§pi(i = 1,··· , n)’uAn. ex = n
, {|¢d(k) =
.
1 − 2x1x2 + 4x2
.
2 + x1 − 3x2. K3x(k) = (1, 1)T ?§e
i=1 αipi§
£^x, pi, AL«⁄.
Kαi =
4. …Œf (x1, x2) = (x1− 1
2
4:.
5. ˜flK{min f (x) | l ≤ x ≤ u; x ∈ Rn}, ¥li < ui(i = 1,··· , n). f (x)·ºY
2−3x2 ›‰:k
x2)2+x3
§¥
1
…Œ§x∗·‘). ex∗i = li, K
∂f (x∗)
∂xi
0. ex∗i = ui, K
∂f (x∗)
∂xi
0.
∂f (x∗)
0.
eli < x∗i < ui, K
6. f : Rn → RgºY. Psk = x(k+1) − x(k), yk = ∇f (x(k+1)) − ∇f (x(k)).
Bk+1∇2f (x(k+1))Cq§Kv[§
∂xi
.
β
β
β
min x1 + βx2
s.t. − x1 + x2 ≤ 1,
−x1 + 3x2 ≤ 4,
x1 ≥ 0, x2 ≥ 0,
K
7. ˜55yflK
§k‘)¶
§kˆ¡‘)¶
§ˆ‘).
8. ^0.618{(7'{⁄ƒ)minx∈R 2x2 − x − 1. —'«m[a1, b1] = [−1, 1]§K«m
[a2, b2]=
(3nŒ⁄.
n!OK£37'⁄.
1£13'⁄. ‰|–3«‹. z«¨d'O1200, 1000, 700 /Z.
¥zZªn«‹„E⁄'A'O3§4§2§„E⁄'B'O2§1, 1. qz
3
2£12'⁄. ^F{ƒ)min f (x) = 2x2
1 + 2x1x2 + x2
2 + 3x1 − 4x2§—':x(1) = (0, 0)T .
4
Rn → RºY§A ∈ Rm×n, B ∈ Rs×n, bc'Oms.
min f (x)
s.t. Ax ≥ b,
Bx = c,
3£12'⁄. ƒ)eª55yflKZoutendijk1{§
¥f (x) :
5
o!'K£24'⁄.
1£12'⁄. (a) y†‰nØu5yflK§ex∗ ·flK4:§Kx∗‰·4:.
e8I…Œ…Œ§Kx∗ 4:.
(b) A m × n1. ˜‘zflK
min f (x) =
1
2
xT x
s.t. Ax = b.
ØTflK)§‘†T)·4:.
6
2£12'⁄. ¤v…ŒS:{‰´¤v…ŒG(x, r) = f (x) + rB(x)§¥B(x) > 0. 0 < rk+1 <
rk, xk xk+1 'Ovˇfr rk rk+1 ˆflKminx G(x, r) 4:§y†e
“⁄Æ
(1) B(xk) ≤ B(xk+1);
(2) f (xk+1) ≤ f (xk);
(3) G(xk+1, rk+1) ≤ G(xk, rk).
7