logo资料库

矩阵公式大全.pdf

第1页 / 共72页
第2页 / 共72页
第3页 / 共72页
第4页 / 共72页
第5页 / 共72页
第6页 / 共72页
第7页 / 共72页
第8页 / 共72页
资料共72页,剩余部分请下载后查看
Basics
Trace
Determinant
The Special Case 2x2
Derivatives
Derivatives of a Determinant
Derivatives of an Inverse
Derivatives of Eigenvalues
Derivatives of Matrices, Vectors and Scalar Forms
Derivatives of Traces
Derivatives of vector norms
Derivatives of matrix norms
Derivatives of Structured Matrices
Inverses
Basic
Exact Relations
Implication on Inverses
Approximations
Generalized Inverse
Pseudo Inverse
Complex Matrices
Complex Derivatives
Higher order and non-linear derivatives
Inverse of complex sum
Solutions and Decompositions
Solutions to linear equations
Eigenvalues and Eigenvectors
Singular Value Decomposition
Triangular Decomposition
LU decomposition
LDM decomposition
LDL decompositions
Statistics and Probability
Definition of Moments
Expectation of Linear Combinations
Weighted Scalar Variable
Multivariate Distributions
Cauchy
Dirichlet
Normal
Normal-Inverse Gamma
Gaussian
Multinomial
Student's t
Wishart
Wishart, Inverse
Gaussians
Basics
Moments
Miscellaneous
Mixture of Gaussians
Special Matrices
Block matrices
Discrete Fourier Transform Matrix, The
Hermitian Matrices and skew-Hermitian
Idempotent Matrices
Orthogonal matrices
Positive Definite and Semi-definite Matrices
Singleentry Matrix, The
Symmetric, Skew-symmetric/Antisymmetric
Toeplitz Matrices
Transition matrices
Units, Permutation and Shift
Vandermonde Matrices
Functions and Operators
Functions and Series
Kronecker and Vec Operator
Vector Norms
Matrix Norms
Rank
Integral Involving Dirac Delta Functions
Miscellaneous
One-dimensional Results
Gaussian
One Dimensional Mixture of Gaussians
Proofs and Details
Misc Proofs
The Matrix Cookbook [ http://matrixcookbook.com ] Kaare Brandt Petersen Michael Syskind Pedersen Version: November 15, 2012 1
Introduction What is this? These pages are a collection of facts (identities, approxima- tions, inequalities, relations, ...) about matrices and matters relating to them. It is collected in this form for the convenience of anyone who wants a quick desktop reference . Disclaimer: The identities, approximations and relations presented here were obviously not invented but collected, borrowed and copied from a large amount of sources. These sources include similar but shorter notes found on the internet and appendices in books - see the references for a full list. Errors: Very likely there are errors, typos, and mistakes for which we apolo- gize and would be grateful to receive corrections at cookbook@2302.dk. Its ongoing: The project of keeping a large repository of relations involving matrices is naturally ongoing and the version will be apparent from the date in the header. Suggestions: Your suggestion for additional content or elaboration of some topics is most welcome acookbook@2302.dk. Keywords: Matrix algebra, matrix relations, matrix identities, derivative of determinant, derivative of inverse matrix, differentiate a matrix. Acknowledgements: We would like to thank the following for contributions and suggestions: Bill Baxter, Brian Templeton, Christian Rishøj, Christian Schr¨oppel, Dan Boley, Douglas L. Theobald, Esben Hoegh-Rasmussen, Evripidis Karseras, Georg Martius, Glynne Casteel, Jan Larsen, Jun Bin Gao, J¨urgen Struckmeier, Kamil Dedecius, Karim T. Abou-Moustafa, Korbinian Strimmer, Lars Christiansen, Lars Kai Hansen, Leland Wilkinson, Liguo He, Loic Thibaut, Markus Froeb, Michael Hubatka, Miguel Bar˜ao, Ole Winther, Pavel Sakov, Stephan Hattinger, Troels Pedersen, Vasile Sima, Vincent Rabaud, Zhaoshui He. We would also like thank The Oticon Foundation for funding our PhD studies. Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 2
CONTENTS Contents 1 Basics CONTENTS 1.1 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 The Special Case 2x2 . . . . . . . . . . . . . . . . . . . . . . . . . 2 Derivatives 2.1 Derivatives of a Determinant . . . . . . . . . . . . . . . . . . . . 2.2 Derivatives of an Inverse . . . . . . . . . . . . . . . . . . . . . . . 2.3 Derivatives of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . 2.4 Derivatives of Matrices, Vectors and Scalar Forms . . . . . . . . 2.5 Derivatives of Traces . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Derivatives of vector norms . . . . . . . . . . . . . . . . . . . . . 2.7 Derivatives of matrix norms . . . . . . . . . . . . . . . . . . . . . 2.8 Derivatives of Structured Matrices . . . . . . . . . . . . . . . . . 3 Inverses 3.1 Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Exact Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Implication on Inverses . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Generalized Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Pseudo Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Complex Matrices 4.1 Complex Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Higher order and non-linear derivatives . . . . . . . . . . . . . . . 4.3 Inverse of complex sum . . . . . . . . . . . . . . . . . . . . . . . 5 Solutions and Decompositions 5.1 Solutions to linear equations . . . . . . . . . . . . . . . . . . . . . 5.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . 5.3 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . 5.4 Triangular Decomposition . . . . . . . . . . . . . . . . . . . . . . 5.5 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 LDM decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 LDL decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 6 Statistics and Probability 6.1 Definition of Moments . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Expectation of Linear Combinations . . . . . . . . . . . . . . . . 6.3 Weighted Scalar Variable . . . . . . . . . . . . . . . . . . . . . . 7 Multivariate Distributions 7.1 Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Normal-Inverse Gamma . . . . . . . . . . . . . . . . . . . . . . . 7.5 Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Multinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 6 7 8 8 9 10 10 12 14 14 14 17 17 18 20 20 21 21 24 24 26 27 28 28 30 31 32 32 33 33 34 34 35 36 37 37 37 37 37 37 37 Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 3
CONTENTS CONTENTS 7.7 Student’s t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Wishart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.9 Wishart, Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Gaussians 8.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 Mixture of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . 9 Special Matrices 9.1 Block matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Discrete Fourier Transform Matrix, The . . . . . . . . . . . . . . 9.3 Hermitian Matrices and skew-Hermitian . . . . . . . . . . . . . . 9.4 Idempotent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 9.5 Orthogonal matrices . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 Positive Definite and Semi-definite Matrices . . . . . . . . . . . . 9.7 Singleentry Matrix, The . . . . . . . . . . . . . . . . . . . . . . . 9.8 Symmetric, Skew-symmetric/Antisymmetric . . . . . . . . . . . . 9.9 Toeplitz Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10 Transition matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 9.11 Units, Permutation and Shift . . . . . . . . . . . . . . . . . . . . 9.12 Vandermonde Matrices . . . . . . . . . . . . . . . . . . . . . . . . 10 Functions and Operators 10.1 Functions and Series . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Kronecker and Vec Operator . . . . . . . . . . . . . . . . . . . . 10.3 Vector Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 Integral Involving Dirac Delta Functions . . . . . . . . . . . . . . 10.7 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A One-dimensional Results A.1 Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 One Dimensional Mixture of Gaussians . . . . . . . . . . . . . . . B Proofs and Details B.1 Misc Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 38 39 40 40 42 44 44 46 46 47 48 49 49 50 52 54 54 55 56 57 58 58 59 61 61 62 62 63 64 64 65 66 66 Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 4
CONTENTS CONTENTS Notation and Nomenclature A Aij Ai Aij An A−1 A+ A1/2 (A)ij Aij [A]ij a ai ai a z z Z z z Z Matrix Matrix indexed for some purpose Matrix indexed for some purpose Matrix indexed for some purpose Matrix indexed for some purpose or The n.th power of a square matrix The inverse matrix of the matrix A The pseudo inverse matrix of the matrix A (see Sec. 3.6) The square root of a matrix (if unique), not elementwise The (i, j).th entry of the matrix A The (i, j).th entry of the matrix A The ij-submatrix, i.e. A with i.th row and j.th column deleted Vector (column-vector) Vector indexed for some purpose The i.th element of the vector a Scalar Real part of a scalar Real part of a vector Real part of a matrix Imaginary part of a scalar Imaginary part of a vector Imaginary part of a matrix Trace of the matrix A Eigenvalues of the matrix A det(A) Determinant of A Tr(A) diag(A) Diagonal matrix of the matrix A, i.e. (diag(A))ij = δijAij eig(A) vec(A) The vector-version of the matrix A (see Sec. 10.2.2) sup ||A|| AT A−T A∗ AH A ◦ B Hadamard (elementwise) product A ⊗ B Kronecker product Supremum of a set Matrix norm (subscript if any denotes what norm) Transposed matrix The inverse of the transposed and vice versa, A−T = (A−1)T = (AT )−1. Complex conjugated matrix Transposed and complex conjugated matrix (Hermitian) 0 I Jij Σ Λ The null matrix. Zero in all entries. The identity matrix The single-entry matrix, 1 at (i, j) and zero elsewhere A positive definite matrix A diagonal matrix Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 5
1 Basics 1.1 Trace (AB)−1 = B−1A−1 (ABC...)−1 = ...C−1B−1A−1 (AT )−1 = (A−1)T (A + B)T = AT + BT (AB)T = BT AT (ABC...)T = ...CT BT AT (AH )−1 = (A−1)H (A + B)H = AH + BH (AB)H = BH AH (ABC...)H = ...CH BH AH Tr(A) = Tr(A) = iAii iλi, Tr(A) = Tr(AT ) Tr(AB) = Tr(BA) λi = eig(A) Tr(A + B) = Tr(A) + Tr(B) Tr(ABC) = Tr(BCA) = Tr(CAB) aT a = Tr(aaT ) 1.2 Determinant Let A be an n × n matrix. det(A) = iλi λi = eig(A) if A ∈ Rn×n det(cA) = cn det(A), det(AT ) = det(A) det(AB) = det(A) det(B) det(A−1) = 1/ det(A) det(An) = det(A)n det(I + uvT ) = 1 + uT v For n = 2: For n = 3: det(I + A) = 1 + det(A) + Tr(A) 1 BASICS (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) det(I + A) = 1 + det(A) + Tr(A) + 1 2 Tr(A)2 − 1 2 Tr(A2) (26) Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 6
1.3 The Special Case 2x2 1 BASICS For n = 4: det(I + A) = 1 + det(A) + Tr(A) + 1 2 Tr(A2) +Tr(A)2 − 1 2 Tr(A)3 − 1 2 1 6 + Tr(A)Tr(A2) + 1 3 Tr(A3) (27) For small ε, the following approximation holds det(I + εA) ∼= 1 + det(A) + εTr(A) + 1 2 ε2Tr(A)2 − 1 2 ε2Tr(A2) (28) 1.3 The Special Case 2x2 Consider the matrix A A = Determinant and trace A11 A12 A21 A22 det(A) = A11A22 − A12A21 Tr(A) = A11 + A22 (29) (30) Eigenvalues λ1 = Tr(A) +Tr(A)2 − 4 det(A) 2 λ1 + λ2 = Tr(A) v1 ∝ A12 λ1 − A11 Eigenvectors λ2 − λ · Tr(A) + det(A) = 0 λ2 = Tr(A) −Tr(A)2 − 4 det(A) 2 λ1λ2 = det(A) Inverse A−1 = 1 det(A) A12 λ2 − A11 v2 ∝ A22 −A12 −A21 A11 (31) Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 7
2 DERIVATIVES 2 Derivatives This section is covering differentiation of a number of expressions with respect to a matrix X. Note that it is always assumed that X has no special structure, i.e. that the elements of X are independent (e.g. not symmetric, Toeplitz, positive definite). See section 2.8 for differentiation of structured matrices. The basic assumptions can be written in a formula as = δikδlj (32) that is for e.g. vector forms, ∂x ∂y i = ∂xi ∂y ∂x ∂y ij = ∂xi ∂yj = ∂x ∂yi ∂Xkl ∂Xij ∂x ∂y i The following rules are general and very useful when deriving the differential of an expression ([19]): ∂A = 0 ∂(αX) = α∂X (A is a constant) ∂(XY) = (∂X)Y + X(∂Y) ∂(X + Y) = ∂X + ∂Y ∂(Tr(X)) = Tr(∂X) ∂(X ◦ Y) = (∂X) ◦ Y + X ◦ (∂Y) ∂(X ⊗ Y) = (∂X) ⊗ Y + X ⊗ (∂Y) ∂(X−1) = −X−1(∂X)X−1 ∂(det(X)) = Tr(adj(X)∂X) ∂(det(X)) = det(X)Tr(X−1∂X) ∂(ln(det(X))) = Tr(X−1∂X) ∂XT = (∂X)T ∂XH = (∂X)H 2.1 Derivatives of a Determinant 2.1.1 General form Y−1 ∂Y ∂x = det(Y)Tr ∂ det(Y) k ∂x ∂ det(X) ∂Xik ∂2 det(Y) ∂x2 Xjk = δij det(X) = det(Y) Tr Y−1 ∂ ∂Y ∂x ∂x Y−1 ∂Y ∂x Y−1 ∂Y ∂x Tr Y−1 ∂Y ∂x Y−1 ∂Y ∂x +Tr −Tr (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 8
分享到:
收藏