This is page iii
Printer: Opaque this
Jorge Nocedal
Stephen J. Wright
Numerical Optimization
Second Edition
This is pag
Printer: O
Stephen J. Wright
Computer Sciences Department
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706–1613
USA
swright@cs.wisc.edu
Stephen M. Robinson
Department of Industrial and Systems
Engineering
University of Wisconsin
1513 University Avenue
Madison, WI 53706–1539
USA
smrobins@facstaff.wise.edu
Jorge Nocedal
EECS Department
Northwestern University
Evanston, IL 60208-3118
USA
nocedal@eecs.northwestern.edu
Series Editors:
Thomas V. Mikosch
University of Copenhagen
Laboratory of Actuarial Mathematics
DK-1017 Copenhagen
Denmark
mikosch@act.ku.dk
Sidney I. Resnick
Cornell University
School of Operations Research and
Industrial Engineering
Ithaca, NY 14853
USA
sirl@cornell.edu
Mathematics Subject Classification (2000): 90B30, 90C11, 90-01, 90-02
Library of Congress Control Number: 2006923897
ISBN-10: 0-387-30303-0
ISBN-13: 978-0387-30303-1
Printed on acid-free paper.
C 2006 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission
of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.
Printed in the United States of America.
(TB/HAM)
9 8 7 6 5 4 3 2 1
springer.com
This is page v
Printer: Opaque this
To Sue, Isabel and Martin
and
To Mum and Dad
Contents
Preface
Preface to the Second Edition
1
Introduction
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Mathematical Formulation .
.
.
Example: A Transportation Problem .
.
Continuous versus Discrete Optimization .
.
Constrained and Unconstrained Optimization .
.
Global and Local Optimization .
.
.
Stochastic and Deterministic Optimization .
.
.
Convexity
.
Optimization Algorithms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Notes and References
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2 Fundamentals of Unconstrained Optimization
.
2.1 What Is a Solution?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
This is page vii
Printer: Opaque this
xvii
xxi
1
2
4
5
6
6
7
7
8
9
10
12
viii
C O N T E N T S
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Recognizing a Local Minimum .
.
.
Nonsmooth Problems .
.
.
Overview of Algorithms .
.
Two Strategies: Line Search and Trust Region .
.
Search Directions for Line Search Methods .
.
.
Models for Trust-Region Methods .
Scaling .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2.2
Exercises .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.2
3.3
3 Line Search Methods
.
.
.
.
Step Length .
.
.
.
.
The Wolfe Conditions .
.
.
.
The Goldstein Conditions .
.
.
.
Sufficient Decrease and Backtracking .
.
.
Convergence of Line Search Methods .
.
.
Rate of Convergence .
.
.
.
Convergence Rate of Steepest Descent .
.
.
.
Newton’s Method .
.
.
Quasi-Newton Methods .
.
.
.
Newton’s Method with Hessian Modification .
.
.
Eigenvalue Modification .
.
.
Adding a Multiple of the Identity .
.
.
Modified Cholesky Factorization .
.
.
Modified Symmetric Indefinite Factorization .
.
.
Step-Length Selection Algorithms .
.
.
Interpolation .
.
.
Initial Step Length .
.
.
.
A Line Search Algorithm for the Wolfe Conditions .
.
.
Notes and References
Exercises .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.4
3.5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4 Trust-Region Methods
.
.
.
.
.
.
.
.
.
.
.
.
.
Outline of the Trust-Region Approach .
.
Algorithms Based on the Cauchy Point
.
.
.
.
.
The Cauchy Point
.
.
.
.
.
Improving on the Cauchy Point .
The Dogleg Method .
.
.
.
.
.
Two-Dimensional Subspace Minimization .
.
Global Convergence .
.
.
Reduction Obtained by the Cauchy Point .
.
Convergence to Stationary Points .
.
.
.
.
Iterative Solution of the Subproblem .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4.1
4.2
4.3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
14
17
18
19
20
25
26
27
30
31
33
36
37
37
41
42
44
46
48
49
51
52
54
56
57
59
60
62
63
66
68
71
71
73
73
76
77
77
79
83
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
The Hard Case .
.
Proof of Theorem 4.1 .
.
Convergence of Algorithms Based on Nearly Exact Solutions .
.
Local Convergence of Trust-Region Newton Methods
.
.
.
Other Enhancements
.
.
Scaling .
.
.
Trust Regions in Other Norms .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Notes and References
Exercises .
.
.
.
.
5 Conjugate Gradient Methods
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
The BFGS Method .
.
.
.
Properties of the BFGS Method .
.
.
.
Implementation .
.
.
.
The SR1 Method .
.
.
.
.
.
Properties of SR1 Updating .
.
.
.
.
The Broyden Class .
.
Convergence Analysis
.
.
.
.
Global Convergence of the BFGS Method .
.
Superlinear Convergence of the BFGS Method .
.
Convergence Analysis of the SR1 Method .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Notes and References
.
Exercises .
.
.
.
.
C O N T E N T S
ix
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
87
89
91
92
95
95
97
98
98
101
102
102
107
111
112
118
120
121
121
122
124
125
127
131
132
133
135
136
141
142
144
147
149
153
153
156
160
161
162
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4.4
4.5
5.1
5.2
6.1
6.2
6.3
6.4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
The Linear Conjugate Gradient Method .
Conjugate Direction Methods .
.
.
Basic Properties of the Conjugate Gradient Method .
A Practical Form of the Conjugate Gradient Method .
.
.
.
Rate of Convergence .
.
.
.
Preconditioning .
.
.
.
.
Practical Preconditioners
.
.
.
Nonlinear Conjugate Gradient Methods
.
.
The Fletcher–Reeves Method .
.
.
The Polak–Ribi`ere Method and Variants
.
.
Quadratic Termination and Restarts .
.
.
.
.
Behavior of the Fletcher–Reeves Method .
.
.
Global Convergence .
.
Numerical Performance .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Notes and References
Exercises .
.
.
.
.
.
6 Quasi-Newton Methods
x
C O N T E N T S
7 Large-Scale Unconstrained Optimization
.
7.1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Inexact Newton Methods
.
.
Local Convergence of Inexact Newton Methods .
.
.
Line Search Newton–CG Method .
.
Trust-Region Newton–CG Method .
.
.
Preconditioning the Trust-Region Newton–CG Method .
.
Trust-Region Newton–Lanczos Method .
.
.
.
Limited-Memory Quasi-Newton Methods
.
Limited-Memory BFGS .
.
.
.
Relationship with Conjugate Gradient Methods
General Limited-Memory Updating .
.
.
.
.
.
Compact Representation of BFGS Updating
.
.
.
Unrolling the Update
.
Sparse Quasi-Newton Updates
.
.
.
.
Algorithms for Partially Separable Functions .
.
.
Perspectives and Software .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7.3
7.4
7.5
Notes and References
Exercises .
.
.
.
.
.
.
8 Calculating Derivatives
7.2
8.1
8.2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Finite-Difference Derivative Approximations .
.
.
Approximating the Gradient .
.
.
.
Approximating a Sparse Jacobian .
.
.
.
Approximating the Hessian .
.
.
.
.
Approximating a Sparse Hessian .
.
Automatic Differentiation .
.
.
.
.
.
.
.
.
An Example .
.
.
.
.
.
.
The Forward Mode
.
The Reverse Mode .
.
.
.
.
Vector Functions and Partial Separability .
.
.
Calculating Jacobians of Vector Functions .
.
.
Calculating Hessians: Forward Mode .
.
.
.
Calculating Hessians: Reverse Mode .
Current Limitations .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Notes and References
Exercises .
.
.
.
.
9 Derivative-Free Optimization
9.1
9.2 Model-Based Methods .
Finite Differences and Noise .
.
.
.
Interpolation and Polynomial Bases .
.
Updating the Interpolation Set
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
164
165
166
168
170
174
175
176
177
180
181
181
184
185
186
189
190
191
193
194
195
197
201
202
204
205
206
207
210
212
213
215
216
217
217
220
221
223
226
227
C O N T E N T S
xi
9.3
A Method Based on Minimum-Change Updating .
.
Coordinate and Pattern-Search Methods
.
Coordinate Search Method .
.
.
.
.
Pattern-Search Methods .
.
.
.
.
A Conjugate-Direction Method .
.
.
.
Nelder–Mead Method .
Implicit Filtering .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
9.4
9.5
9.6
Notes and References
Exercises .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
10 Least-Squares Problems
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Linear Least-Squares Problems
.
10.1 Background .
10.2
.
10.3 Algorithms for Nonlinear Least-Squares Problems
.
.
.
.
.
.
.
The Gauss–Newton Method .
.
.
Convergence of the Gauss–Newton Method .
The Levenberg–Marquardt Method .
.
.
Implementation of the Levenberg–Marquardt Method .
.
Convergence of the Levenberg–Marquardt Method .
.
.
Methods for Large-Residual Problems .
.
.
.
.
.
.
.
.
.
10.4 Orthogonal Distance Regression .
Notes and References
.
.
.
Exercises .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11 Nonlinear Equations
.
.
.
.
.
.
.
.
.
.
.
.
.
11.1
11.2
.
Local Algorithms .
Newton’s Method for Nonlinear Equations .
.
Inexact Newton Methods
.
.
.
Broyden’s Method .
.
Tensor Methods
.
.
.
.
.
.
.
.
Practical Methods
.
.
Merit Functions
.
.
.
.
Line Search Methods .
.
Trust-Region Methods .
.
.
.
.
.
.
.
.
.
.
.
.
.
11.3 Continuation/Homotopy Methods
Motivation .
.
Practical Continuation Methods .
.
.
Notes and References
.
Exercises .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
12 Theory of Constrained Optimization
.
Local and Global Solutions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
228
229
230
231
234
238
240
242
242
245
247
250
254
254
255
258
259
261
262
265
267
269
270
274
274
277
279
283
285
285
287
290
296
296
297
302
302
304
305