logo资料库

Numerical Optimization-Springer.pdf

第1页 / 共683页
第2页 / 共683页
第3页 / 共683页
第4页 / 共683页
第5页 / 共683页
第6页 / 共683页
第7页 / 共683页
第8页 / 共683页
资料共683页,剩余部分请下载后查看
Title
Contents
Preface
Preface to the Second Edition
01 Introduction
02 Fundamentals of Unconstrained Optimization
03 Line Search Methods
04 Trust-Region Methods
05 Conjugate Gradient Methods
06 Quasi-Newton Methods
07 Large-Scale Unconstrained Optimization
08 Calculating Derivatives
09 Derivative-Free Optimization
10 Least-Squares Problems
11 Nonlinear Equations
12 Theory of Constrained Optimization
13 Linear Programming: The Simplex Method
14 Linear Programming: Interior-Point Methods
15 Fundamentals of Algorithms for Nonlinear Constrained Optimization
16 Quadratic Programming
17 Penalty and Augmented Lagrangian Methods
18 Sequential Quadratic Programming
19 Interior-Point Methods for Nonlinear Programming
Appendix A. Background Material
Appendix B. A Regularization Procedure
References
Index
This is page iii Printer: Opaque this Jorge Nocedal Stephen J. Wright Numerical Optimization Second Edition
This is pag Printer: O Stephen J. Wright Computer Sciences Department University of Wisconsin 1210 West Dayton Street Madison, WI 53706–1613 USA swright@cs.wisc.edu Stephen M. Robinson Department of Industrial and Systems Engineering University of Wisconsin 1513 University Avenue Madison, WI 53706–1539 USA smrobins@facstaff.wise.edu Jorge Nocedal EECS Department Northwestern University Evanston, IL 60208-3118 USA nocedal@eecs.northwestern.edu Series Editors: Thomas V. Mikosch University of Copenhagen Laboratory of Actuarial Mathematics DK-1017 Copenhagen Denmark mikosch@act.ku.dk Sidney I. Resnick Cornell University School of Operations Research and Industrial Engineering Ithaca, NY 14853 USA sirl@cornell.edu Mathematics Subject Classification (2000): 90B30, 90C11, 90-01, 90-02 Library of Congress Control Number: 2006923897 ISBN-10: 0-387-30303-0 ISBN-13: 978-0387-30303-1 Printed on acid-free paper. C 2006 Springer Science+Business Media, LLC. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (TB/HAM) 9 8 7 6 5 4 3 2 1 springer.com
This is page v Printer: Opaque this To Sue, Isabel and Martin and To Mum and Dad
Contents Preface Preface to the Second Edition 1 Introduction . . . . . . . . . . . . . . Mathematical Formulation . . . Example: A Transportation Problem . . Continuous versus Discrete Optimization . . Constrained and Unconstrained Optimization . . Global and Local Optimization . . . Stochastic and Deterministic Optimization . . . Convexity . Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Fundamentals of Unconstrained Optimization . 2.1 What Is a Solution? . . . . . . . . . . . . . . . . . . . . . . . . . . . This is page vii Printer: Opaque this xvii xxi 1 2 4 5 6 6 7 7 8 9 10 12
viii C O N T E N T S . . . . . . . . . . . . . . . . . . . . . . . . . Recognizing a Local Minimum . . . Nonsmooth Problems . . . Overview of Algorithms . . Two Strategies: Line Search and Trust Region . . Search Directions for Line Search Methods . . . Models for Trust-Region Methods . Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 3.3 3 Line Search Methods . . . . Step Length . . . . . The Wolfe Conditions . . . . The Goldstein Conditions . . . . Sufficient Decrease and Backtracking . . . Convergence of Line Search Methods . . . Rate of Convergence . . . . Convergence Rate of Steepest Descent . . . . Newton’s Method . . . Quasi-Newton Methods . . . . Newton’s Method with Hessian Modification . . . Eigenvalue Modification . . . Adding a Multiple of the Identity . . . Modified Cholesky Factorization . . . Modified Symmetric Indefinite Factorization . . . Step-Length Selection Algorithms . . . Interpolation . . . Initial Step Length . . . . A Line Search Algorithm for the Wolfe Conditions . . . Notes and References Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Trust-Region Methods . . . . . . . . . . . . . Outline of the Trust-Region Approach . . Algorithms Based on the Cauchy Point . . . . . The Cauchy Point . . . . . Improving on the Cauchy Point . The Dogleg Method . . . . . . Two-Dimensional Subspace Minimization . . Global Convergence . . . Reduction Obtained by the Cauchy Point . . Convergence to Stationary Points . . . . . Iterative Solution of the Subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 4.2 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 17 18 19 20 25 26 27 30 31 33 36 37 37 41 42 44 46 48 49 51 52 54 56 57 59 60 62 63 66 68 71 71 73 73 76 77 77 79 83
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Hard Case . . Proof of Theorem 4.1 . . Convergence of Algorithms Based on Nearly Exact Solutions . . Local Convergence of Trust-Region Newton Methods . . . Other Enhancements . . Scaling . . . Trust Regions in Other Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes and References Exercises . . . . . 5 Conjugate Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The BFGS Method . . . . Properties of the BFGS Method . . . . Implementation . . . . The SR1 Method . . . . . . Properties of SR1 Updating . . . . . The Broyden Class . . Convergence Analysis . . . . Global Convergence of the BFGS Method . . Superlinear Convergence of the BFGS Method . . Convergence Analysis of the SR1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes and References . Exercises . . . . . C O N T E N T S ix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 89 91 92 95 95 97 98 98 101 102 102 107 111 112 118 120 121 121 122 124 125 127 131 132 133 135 136 141 142 144 147 149 153 153 156 160 161 162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 4.5 5.1 5.2 6.1 6.2 6.3 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Linear Conjugate Gradient Method . Conjugate Direction Methods . . . Basic Properties of the Conjugate Gradient Method . A Practical Form of the Conjugate Gradient Method . . . . Rate of Convergence . . . . Preconditioning . . . . . Practical Preconditioners . . . Nonlinear Conjugate Gradient Methods . . The Fletcher–Reeves Method . . . The Polak–Ribi`ere Method and Variants . . Quadratic Termination and Restarts . . . . . Behavior of the Fletcher–Reeves Method . . . Global Convergence . . Numerical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes and References Exercises . . . . . . 6 Quasi-Newton Methods
x C O N T E N T S 7 Large-Scale Unconstrained Optimization . 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inexact Newton Methods . . Local Convergence of Inexact Newton Methods . . . Line Search Newton–CG Method . . Trust-Region Newton–CG Method . . . Preconditioning the Trust-Region Newton–CG Method . . Trust-Region Newton–Lanczos Method . . . . Limited-Memory Quasi-Newton Methods . Limited-Memory BFGS . . . . Relationship with Conjugate Gradient Methods General Limited-Memory Updating . . . . . . Compact Representation of BFGS Updating . . . Unrolling the Update . Sparse Quasi-Newton Updates . . . . Algorithms for Partially Separable Functions . . . Perspectives and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 7.4 7.5 Notes and References Exercises . . . . . . . 8 Calculating Derivatives 7.2 8.1 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finite-Difference Derivative Approximations . . . Approximating the Gradient . . . . Approximating a Sparse Jacobian . . . . Approximating the Hessian . . . . . Approximating a Sparse Hessian . . Automatic Differentiation . . . . . . . . . An Example . . . . . . . The Forward Mode . The Reverse Mode . . . . . Vector Functions and Partial Separability . . . Calculating Jacobians of Vector Functions . . . Calculating Hessians: Forward Mode . . . . Calculating Hessians: Reverse Mode . Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes and References Exercises . . . . . 9 Derivative-Free Optimization 9.1 9.2 Model-Based Methods . Finite Differences and Noise . . . . Interpolation and Polynomial Bases . . Updating the Interpolation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 165 166 168 170 174 175 176 177 180 181 181 184 185 186 189 190 191 193 194 195 197 201 202 204 205 206 207 210 212 213 215 216 217 217 220 221 223 226 227
C O N T E N T S xi 9.3 A Method Based on Minimum-Change Updating . . Coordinate and Pattern-Search Methods . Coordinate Search Method . . . . . Pattern-Search Methods . . . . . A Conjugate-Direction Method . . . . Nelder–Mead Method . Implicit Filtering . . . . . . . . . . . . . . . 9.4 9.5 9.6 Notes and References Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Least-Squares Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear Least-Squares Problems . 10.1 Background . 10.2 . 10.3 Algorithms for Nonlinear Least-Squares Problems . . . . . . . The Gauss–Newton Method . . . Convergence of the Gauss–Newton Method . The Levenberg–Marquardt Method . . . Implementation of the Levenberg–Marquardt Method . . Convergence of the Levenberg–Marquardt Method . . . Methods for Large-Residual Problems . . . . . . . . . . 10.4 Orthogonal Distance Regression . Notes and References . . . Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Nonlinear Equations . . . . . . . . . . . . . 11.1 11.2 . Local Algorithms . Newton’s Method for Nonlinear Equations . . Inexact Newton Methods . . . Broyden’s Method . . Tensor Methods . . . . . . . . Practical Methods . . Merit Functions . . . . Line Search Methods . . Trust-Region Methods . . . . . . . . . . . . . . 11.3 Continuation/Homotopy Methods Motivation . . Practical Continuation Methods . . . Notes and References . Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Theory of Constrained Optimization . Local and Global Solutions . . . . . . . . . . . . . . . . . . . . . . . 228 229 230 231 234 238 240 242 242 245 247 250 254 254 255 258 259 261 262 265 267 269 270 274 274 277 279 283 285 285 287 290 296 296 297 302 302 304 305
分享到:
收藏